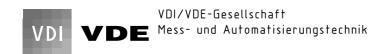
17. Branchentreff der Messund Automatisierungstechnik


AUTOMATION 2016

Secure & reliable in the digital world

VDI-BERICHTE

Herausgeber: VDI Wissensforum GmbH

17. Branchentreff der Messund Automatisierungstechnik

AUTOMATION 2016

Secure & reliable in the digital world

Kongresshaus Baden-Baden, 07. und 08. Juni 2016

VDI-Berichte 2284

Bibliographische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet unter http://dnb.ddb.de abrufbar.

Bibliographic information published by the Deutsche Nationalbibliothek (German National Library)

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliographie

(German National Bibliography); detailed bibliographic data is available via Internet at http://dnb.ddb.de.

© VDI Verlag GmbH · Düsseldorf 2016

Alle Rechte vorbehalten, auch das des Nachdruckes, der Wiedergabe (Photokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, auszugsweise oder vollständig.

Der VDI-Bericht, der die Vorträge der Tagung enthält, erscheint als nichtredigierter Manuskriptdruck. Die einzelnen Beiträge geben die auf persönlichen Erkenntnissen beruhenden Ansichten und Erfahrungen der jeweiligen Vortragenden bzw. Autoren wieder.

Printed in Germany.

ISSN 0083-5560

ISBN 978-3-18-092284-0

Kongressleiter

Dr.-Ing. Peter Adolphs, CTO/Geschäftsführer Entwicklung & Marketing, Pepperl+Fuchs GmbH, Mannheim

Prof. Dr.-Ing. Ulrich Jumar, Institutsleiter, ifak – Institut für Automation und Kommunikation e. V., Magdeburg

Dr.-Ing. Wilhelm Otten, Head of Business Line Process Technology & Engineering, Evonik Technology & Infrastructure GmbH, Hanau

Programmausschuss

Univ.-Prof. Dr.-Ing. Dirk Abel, Inhaber des Lehrstuhls und Instituts für Regelungstechnik, RWTH Aachen University

Dr. rer. nat. Thomas Albers, Leiter Technik Automation, WAGO Kontakttechnik GmbH & Co. KG. Minden

Dr. Joachim Birk, Vice President, Executive Expert of Automation Technology, Head of G-CoE Automation, Head of E-CoE-Process Control, BASF SE, Ludwigshafen

Prof. Dr. Christian Diedrich, Lehrstuhl für Integrierte Automation, Institut für Automatisierungstechnik, Otto-von-Guericke-Universität, Magdeburg

Dr.-Ing. Dagmar Dirzus, Geschäftsführerin VDI/VDE-GMA, VDI e.V., Düsseldorf

Dipl.-Ing. Heinrich Engelhard, Geschäftsführer NAMUR, Leverkusen

Prof. Dr.-Ing. Ulrich Epple, Lehrstuhl für Prozessleittechnik, RWTH Aachen University

Univ.-Prof. Dr.-Ing. Alexander Fay, Leiter des Instituts für Automatisierungstechnik, Helmut-Schmidt-Universität / Universität der Bundeswehr, Hamburg

Dr. Helmut Figalist, Leiter Technologie und Innovation, Industry Automation, Siemens AG, Nürnberg

Univ.-Prof. Dr.-Ing. Georg Frey, Lehrstuhl für Automatisierungs- und Energiesysteme, Universität des Saarlandes, Saarbrücken

Dr.-Ing. Stefan Gehlen, Geschäftsführer, VMT Vision Machine Technic Bildverarbeitungssysteme GmbH, Mannheim

Dr. Martin Gerlach, Head of OSS-Operation Support, Bayer Technology Services GmbH, Leverkusen

Dipl.-Ing. Tim Henrichs, Head of IA Business Development, Yokogawa Deutschland GmbH, Ratingen

Prof. Dr.-Ing. Hartmut Hensel, Fachbereich Automatisierung und Informatik, Hochschule Harz, Wernigerode

Dr. Ulrich Kaiser, Direktor Technologie, Endress+Hauser Management AG, Reinach, Schweiz

Dr.-Ing. Jörg Kiesbauer, Vorstandsmitglied Forschung und Entwicklung, Samson AG, Frankfurt/Main

Dr.-Ing. Niels Kiupel, OPEX - Operational Excellence, Evonik Industries AG, Essen

Gunther Koschnick, Geschäftsführer Fachverband Automation, ZVEI e.V., Frankfurt/Main

Univ.-Prof. Dr.-Ing. Bernd Kuhlenkötter, Lehrstuhlinhaber, Lehrstuhl für Produktionssysteme (LPS), Fakultät für Maschinenbau, Ruhr-Universität Bochum

Dipl.-Ing. Martin Müller, Leiter Business Unit I/O and Networks, Phoenix Contact Electronics GmbH, Bad Pyrmont

Dr. Thomas Paulus, Startup Industrie 4.0, KSB AG, Frankenthal

Dr. Thorsten Pötter, Head of OSS-Manufacturing IT, Bayer Technology Services GmbH, Leverkusen

Dr.-Ing. Lutz Rauchhaupt, Deputy Head of Department ICT and Automation, Senior Engineer Wireless in Automation, ifak e.V., Magdeburg

Dr.-Ing. Eckhard Roos, Leiter Prozessautomation, Festo AG & Co.KG, Esslingen/Neckar

Dipl.-Kfm. Felix Seibl, Geschäftsführer, ZVEI-FB Messtechnik und Prozessautomatisierung, ZVEI e.V., Frankfurt/Main

Prof. Dr.-Ing. habil. Olaf Simanski, Fachgebiet Automatisierungstechnik, Hochschule Wismar

Prof. Dr.-Ing. Leon Urbas, Professur für Prozessleittechnik, Technische Universität Dresden

Prof. Dr.-Ing. Michael Weyrich, Direktor des Instituts für Automatisierungstechnik und Softwaresysteme, Universität Stuttgart

Dr. Christian Zeidler, Department Manager Software Technologies and Applications, ABB AG Forschungszentrum Deutschland, Ladenburg

Sponsoren

Wir danken unseren Sponsoren für die freundliche Unterstützung.

Goldsponsoren:

www.siemens.de/chemie

Silbersponsoren:

www.festo.com

www.pepperl-fuchs.com

Bronzesponsor:

Sponsor:

www.wago.com

Veranstalter

VDI Wissensforum GmbH

R. Frmler

	\$	Seite
Security		
A. Wichmann	Industrial Security und Industrie 4.0: Sicherheitsanalyse von OPC UA	19
M. Langfinger, S. Duque Antón, C. Lipps, A. Weinand, H. Schotten	Angriffe à la carte – systematische Bewertung von Angriffsvektoren auf industrielle (Funk-)Netzwerke	21
M. Birkhold, A. Neyrinck, A. Lechler, A. Verl	Security aus dem Baukasten – Eine Konzeptvorstellung	23
Automatisiertes Engi	neering	
S. Rösch, D. Schütz, B. Weißenberger, X. Chen, T. Voigt, B. Vogel-Heuser	Durchgängiges MES-Engineering als Grundlage für Industrie 4.0 – Modellbasierte, automatische Generierung von MES	25
T. Beyer, P. Göhner	Agentenbasiertes Assistenzsystem zur Entwicklung und Adaption von automatisierten Systemen am Beispiel von Aufzugsystemen	27
T. Glock, M. Kern, S. Otten, E. Sax	Ableitung von modellbasierten industriellen Vernetzungs- architekturen aus dem Rohrleitungs- und Instrumentenfließ- schema	29
Discrete Manufac	turing	
Automation in der Flie	eßfertigung	
A. König, S. Keller	Assistenzsysteme zur Integration von Produktionsanlagen der Mensch-Roboter-Kooperation in der Fahrzeugfließmontage	31
R. Müller, M. Otto	Automatisiertes Radadaptionssystem für effiziente Inbetrieb- nahme-Prozesse in der Fahrzeugfließmontage – Innovative Inbetriebnahme zukünftiger Fahrerassistenzsysteme	33
U. Berger, D.T. Le, W. Zou	Implementierung der Synchronisation einer mobilen Plattform an einer kontinuierlichen Fließfertigung für Montageaufgabe	35

Optimierung robotergestützter Produktionssysteme P. Stückelmaier, Optimierung der Bahngenauigkeit von Industrierobotern unter 37 Berücksichtigung elastischer Gelenkeinflüsse mittels externer M. Grotjahn, C. Fräger Messungen Optimierung der Performance von High-Speed-Robotern am 39 M. Hüsing, J. Brinker, Beispiel eines Deltaroboters T. Mannheim. M. Wahle. B. Corves S. Spies. Modulare Robotermesszellen zur Hochgeschwindigkeitsqualitäts-41 B. Johnen. prüfung von Außenhautbauteilen in der Automobilindustrie M. Bartelt. B. Pontai. B. Kuhlenkötter Robotergestützte Produktion und Qualitätssicherung L. Thyssen, Optimierungsstrategien zur Steigerung der geometrischen 43 P. Seim. Genauigkeit in der roboterbasierten inkrementellen D. D. Störkle. Blechumformung B. Kuhlenkötter S. Schmitz. Konzeptionierung eines servogesteuerten-Roboter-45 D. Schilberg. Manipulators für das Handling und die Montage von B Kuhlenkötter Reifen und Felgen der "Losgröße 1" B. Schäfer. Automatisierte Befliegung von Windenergieanlagen mit einem 47 T. Engelhardt, Multikopter zu Inspektionszwecken – Multikopter-Prototyp mit D. Abel 2D-LiDAR für 3D-Mapping und Kollisionsvermeidung sowie Vektorfeld-basierte Pfadfolgeregelung Anlagenmodellierung C. Hildebrandt. Modellierung von Aufträgen und Produktionsressourcen in 49 flexibilisierten Produktionsumgebungen X.-L.Hoana. A. Scholz, A. Fav. A. Schreiber, O.Graeser D. Gorecky, Definition einer Systemarchitektur für Industrie 51 S. Wever. 4.0-Produktionsanlagen F. Quint. M. Köster

		Seite
T. Doehring, D. Hasler, S. Klinner, S. Höme	Generisches Modell zur verteilten Diagnose von industriellen Steuerungssystemen	53
Industrial Communica	ation	
L. Rauchhaupt, D. Schulze	Aspekte der Modellierung der Funkkommunikation im Kontext Industrie 4.0	55
T. Stein, U. Konigorski, J. Kiesbauer, J. Fuchs	WirelessHART als Übertragungsprotokoll für regelungstechnische Anwendungen	57
S. Nsaibi, L. Leurs	Chancen und Grenzen der Leistungssteigerung von Industrial Ethernet Systemen bei der Verwendung von Ethernet Time Sensitive Networking (TSN)	59
Innovationen in der Fe	ertigung	
H. Kirchner, A. Pierer, M. Putz, P. Blau	Entwicklung einer Kippregelung für servoelektrische Exzenter- pressen mit mechanisch entkoppelten Hauptantrieben	61
V. Frettlöh, C. Beck, T. Figge	Entwicklung und Erprobung einer neuartigen Produktionstechnik zur vollautomatisierten Integration von RFID Technik in thermoplastische und duroplastische Bauteile	63
T. Ernst, J. Ladiges, B. Hennings, R. Weidner, K. Schwake, A. Fay, J. Wulfsberg,	Automatisierte, hochgenaue Fertigung und Montage an und in schwingenden Strukturen – Studie zur Untersuchung und Evaluation von Konzepten	65

R. Lammering

Process Industries

M. Hoernicke,

J. Kiesbauer, S. Erben

Modularisierung in der Prozessindustrie

T. Holm, A. Haller, J. Bernshausen, D. Schulz, T. Albers, C. Kotsch, M. Maurmaier, A. Stutz, H. Bloch, S. Hensel	Module – Ergebnisse des Namur AK 1.12.1	
A. Stutz, M. Maurmaier	Module as a Device – Ergebnisse einer Studie zur Modulintegration auf Basis von FDI	69
T. Holm, J. Ladiges, S. Wassilew, P. Altmann, A. Fay, L. Urbas, U. Hempen	DIMA im realen Einsatz – Von der Idee zum Prototypen	71
Feldgeräte von morge	en	
A. Tulke, M. Maiwald	Technologie-Roadmap "Prozesssensoren 4.0" – Einführung und Beispiele	73
B. Rauscher, P. Adolphs	Migration von industriellen Sensoren zu Industrie 4.0-Komponenten – Verbesserungs-Potenziale schon während der Evolution nutzen	75
D. Großmann, S. Banerjee,	Predictive Maintenance auf der Basis von FDI und OPC UA	77

Technologiebewertung zur Beschreibung für verfahrenstechnische 67

Operations & Optimization in der Prozessindustrie

M. Krauß, J. Birk	Remote Operation in der Prozessindustrie – Mehr eine Frage der Organisation als der Technik?	79
M. Rautenberg, S. Schneider, M. Roth	Automatisierung von Sonderszenarien in kontinuierlichen verfahrenstechnischen Prozessen	81

Digital World

Cyber-Security

A. Pfoh	The attackers can be anywhere – Results of a Honeynet project of a small town German water works	101
H. Flatt, S. Schriegel, H. Trsek, H. Adamczyk, J. Jasperneite	Analyse der Cyber-Sicherheit von Industrie 4.0-Technologien auf Basis des RAMI 4.0 und Identifikation von Lösungsbedarfen	103
P. Semmelbauer, K. Leidl, M. Aman, L. Dörr, A. Grzemba	Schwachstellen, Angriffsszenarien und Schutzmaßnahmen bei industriellen Protokollen am Beispiel Profinet IO	105

Industrie 4.0 Dienste

D. Schulz, T. Goldschmidt	Industrie 4.0 Dienstearchitektur – Semantische Interoperabilität in Industrie 4.0 Dienstesystemen	107
F. Kretschmer, A. Lechler, A. Verl	Gelbe Seiten für Industrie 4.0 – Aufbrechen statischer Produktionstrukturen mittels eines übergeordneten Verzeichnisdienstes	109
J. Jürjens, N. Menz	Sicherheitszertifizierung für Daten- und Software-Services in Industrie 4.0 – Aspekte der Zertifizierung im Industrial Data Space	111

Modellbasierte Planung

M. Günther, P. Diekhake, A. Scholz, D. Diaz, P. Puntel Schmidt, U. Becker, A. Fay	Unterstützung bei der Planung und Auslegung einer Gebäude- automation	113
A. Zeller, M. Weyrich	Absicherung der Rekonfigurationen von Produktionssystemen während des Betriebs · Warum Assistenzsysteme beim Testen verteilter IT-Systeme an Relevanz gewinnen	115
S. Hensel, M. Graube, L. Urbas, T. Heinzerling, M. Oppelt	Co-Simulation mittels OPC UA	117

OPC-UA

M. Hoffmann,

T. Bangemann

C. Büscher, T. Meisen, S. Jeschke	und Cyber-Physischen Systemen für eine intelligente Produktionsteuerung auf Basis von OPC UA	
T. Bruckschlögl, M. Schmidt, R. Dokku, J. Becker	Embedded Software und Netzwerk Sicherheit für OPC UA und hochvernetzte Anlagensysteme – Software Lizenzierung als Möglichkeit zur Zugangskontrolle und Autorisierung in OPC UA Netzwerken	121
M. Schleipen, J. Pfrommer	OPC UA als Basistechnologie zur Orchestrierung von Produktions- systemen – Orchestrierung von Diensten der Komponenten in Produktionssystemen mit Hilfe von OPC UA	123

Sichere und zuverlässige Integration von Multi-Agenten-Systemen 119

Industrie 4.0: Wertschöpfungsketten und Komponenten

J. Zawisza, K. Hell, H. Röpke, A. Lüder, N. Schmidt	Generische Strukturierung von Produktionssystemen der Fertigungsindustrie	125
T. Hadlich, C. Diedrich,	Planung von Wertschöpfungsketten mit I40-Komponenten	127

A. Fay, O. Drumm, R. Eckardt, G. Gutermuth, D. Krumsiek, U. Löwen, T. Makait, T. Mersch, A. Schertl, T. Schindler, M. Schleipen, S. Schröck	Durchgängigkeit in Wertschöpfungsketten von Industrie 4.0	129
Digital World		
Qualitätssicherung u	nd Diagnose	
S. Abele, M. Weyrich	Automatisierte Datenauswertung zur Fehlerdiagnose und Absicherungsunterstützung für Qualitätssicherungssysteme	131
M. Thron, H. Zipper, S. Magnus, S. Süß, C. Göbeler Z. Liu, C. Diedrich	Beschreibung des normalen und gestörten Verhaltens mechatronischer Komponenten für den automatisierten virtuellen Anlagentest	133
C. Paiz Gatica, M. Köster, T. Gaukstern	Mehrwert aus den Maschinendaten mit Data Analytics – Ansätze zur vorausschauenden Wartung und Prozessoptimierung	135
Posterpräsentationer	1	
S. Rösch, D. Schütz, B. Vogel-Heuser	Modellbasiertes Testen von Steuerungssoftware in der Praxis – Evaluation eines modellbasierten Testansatzes bei Anwendern in der Produktionsautomatisierung	137
L. Hundt, J. Prinz, U. Enste, S. Bukva	Leitsystemerkundung mit AutomationML und OPC UA in "Brownfield"-Projekten	139

		Seite
A. Kroll, A. Dürrbaum, D. Arengas, B. Jäschke, H. Al Mawla, A. Geiger, B. Braun	μPlant: Model factory for the automatization of networked, heterogeneous and flexibly changeable multi-product plants	141
M. Oppelt, M. Hoernicke, R. Rosen, M. Barth, L. Urbas	Simulation 2025: Simulation im Lebenszyklus industrieller Anlagen	143
P. Bidian, J. Göres, J. Röper, A. Junghanns	Verwendung virtueller Bandendeprüfstände zum frühzeitigen Erreichen des Reifegrades der Serienprüfung – Kosten- optimierung durch Nachnutzung von Simulationskomponenten aus der Entwicklung	145
M. Bartelt, A. Strahilov, B. Kuhlenkötter	Prozessüberwachung als Dienstleistungs-App auf einem Cyber- Physischen System	147
M. Dück, J. Trabert, F. Seidler, W. Silex, S. van Waasen, M. Schiek, D. Abel, E. Castelan	Regelung nicht-linear gekoppelter elektromagnetischer Aktuatoren zur aktiven Widerstandsreduktion in turbulenter Strömung	149
BM. Pfeiffer, C. Heck	Lebenszyklus-Management von Regelkreisen – Performance- Indikatoren für verschiedene Fahrweisen von Regelkreisen	151
N. Jazdi, M. Weyrich	Dynamische Berechnung der Zuverlässigkeit von vernetzten kooperierenden Produktionssystemen	153
E. Wagner, D. Zöller, T. Lammersen, D. Abel	Modellbasierte Regelung für den Einsatz in Umweltsimulations- anlagen	155
G. Meyer-Gauen, B. Böhm, S. Döpking, U. Hempen	MTConnect – ein Baustein des IOT – Projektspezifisch umgesetzt: WAGOs PFC-Steuerungen kommunizieren Maschinendaten gemäß MTConnect	157
H. Rudolph, D. Goergen	Security Anforderung an Safety Instrumented Systems (SIS) gemäß dem Standard IEC 61511	159

		00.10
P. Glogowski, M. Rieger, B. Kuhlenkötter	Eigenfrequenzbestimmung eines redundanten Roboterportals zur Schwingungsminimierung in Bearbeitungsprozessen	161
D. D. Störkle, P. Seim, L. Thyssen, B. Kuhlenkötter	Umformung von schwer formbaren Werkstoffen unter Einsatz der konduktiven Erwärmung in der roboterbasierten inkrementellen Blechumformung	163
T. Hadlich, M. Könneke	AutomationML als Anlagendokumentation	165
C. Wagner, F. Palm, S. Grüner	Open Source Projekte als Treiber zukünftiger Entwicklungen in der Automatisierungstechnik	167
M. Behlen, S. Büttner, S. Schmidt, S. Pyritz, C. Röcker	Multitouch im industriellen Umfeld – Evaluierung bestehender Systeme, identifizierte Anwendungsszenarien und Handlungs- empfehlungen für zukünftige Systeme	169
A. Schlag, S. Süß, T. Bär, M. Vielhaber	Ganzheitliche Projektierung automatisierter Montageanlagen als Grundlage von digitalen Absicherungsprozessen	171
S. Höme, C. Diedrich	Bewertung der QoS von IoT-Kommunikationssystemen am Beispiel von MQTT	173
M. Bröcker	Regelungstechnische Anwendungen im Industrie 4.0 Umfeld – Moderne Ansätze des Rapid Control Prototyping	175
A. Lüder, N. Schmidt, E. Yemenicioglu	Herstellerunabhängiger Austausch von Verhaltensmodellen mittels AutomationML	177
S. Grüner, U. Epple	Adaptive Laufzeiteigenschaften von Anwendungen in der Automation: Anforderungen und Nutzungsperspektiven	179

Seite