Concept ELV² - Development of an Electric Drive Axle for Heavy Commercial Vehicles

International Congress - ELV

Institute for Automotive Engineering (ika) – RWTH Aachen University

Sven Köller M.Sc., Roland Uerlich M.Sc., Gordon Wiltham M.Sc., Prof. Dr.-Ing. Lutz Eckstein

sven.koeller@ika.rwth-aachen.de | Telefon: +49 241 80 25625

Motivation

Problem
- Growing demand for electric cars and trucks
- Faster development of powertrains required
- Due to the characteristics of electric machines, new powertrain topologies emerge

Solution
- Holistic design approach
- Evaluation on different stages of simulation
- Optimization of existing transmissions

ika’s Approach

1: Transmission Synthesis
2: Transmission Concept
3: Efficiency Evaluation and Optimization
4: Thermal Evaluation
5: Optimized and Evaluated Transmission Model

Transmission Synthesis, Design and Evaluation

Brief description of model
- Automated transmission topology synthesis
- Design gear design based on standards
- Two-staged evaluation (1st after synthesis, 2nd within genetic algorithm)
- Evaluation weights may be chosen for different vehicle types (e.g., trucks and cars)

Exemplary solutions for a truck transmission
- Quality Pareto-optimum
- > 300 different topologies à ~105 different gear variants

Efficiency Evaluation

Iterative efficiency calculation
- Force, torque and speed model of the full transmission
- Iterative analysis of torque and power losses as a function of the direction of power flow
- Loss calculation according to state of the art and research for gear pair, roller bearings and seals

Evaluation of total efficiency and individual losses
- Static loss and efficiency analysis
- Dynamic energy demand assessment for specific operating points or reference driving cycles
- Evaluation of individual sub-component losses for efficiency optimization

E-Axle Schematic Diagram

E-Axle Concept

Properties
- Two speeds
- Detachable sides to reduce losses
- Main side: Drives truck up to 26t
- Boost side: Drives empty truck (up to 15 t)
- Combined: Maximum weight of 41 t

Next Steps
- Finalize build-up
- Efficiency measurement
- Validation of presented models

References

 https://doi.org/10.1007/s41321-019-8126-3
 https://doi.org/10.1007/s41321-021-00420-6

Thermal Evaluation

Definition of boundary conditions
- While housing data is automatically generated
- Systemic boundary conditions are supplemented by the properties of the lubricant
- Ambient temperatures and local loads are included

Thermal network model
- Gearbox components are modeled in 3D to derive their thermal properties
- Thermal nodes can be determined (heat capacity, thermal conductivity)
- Properties are integrated into a time-independent transfer matrix

Calculation of component temperatures
- Load-dependent transfer coefficients are calculated
- Oil distribution is considered using SPH-based distribution simulations
- Coefficients are transferred into a conductance matrix
- Time-step based solution in performed

Verification via measured data
- After calculation, a comparison with the measured and simulated component temperatures is performed
- Measurement of rotating gearbox elements is complex, hence a telemetry unit is required
See you soon!

Save the date

ELIO 2023

October 18-19, 2023

World Conference Center Bonn

www.eliv-congress.com