Fortschritt-Berichte VDI

Reihe 13

Fördertechnik/ Logistik Dipl.-Ing. Denis Vukovic, Dortmund

Nr. 59

Methodik zur
3D-Analyse der
Laderaumauslastung
von Transportfahrzeugen

Methodik zur 3D-Analyse der Laderaumauslastung von Transportfahrzeugen

Zur Erlangung des akademischen Grades eines

Dr.-Ing.

von der Fakultät Maschinenbau der Technischen Universität Dortmund genehmigte Dissertation

Dipl.-Ing. Denis Vukovic

aus

Titisee-Neustadt

Dortmund, 2021

Tag der mündlichen Prüfung: 18.02.2021

Gutachter: Prof. Dr.-Ing. habil. Rolf Jansen
 Gutachter: Prof. Dr.-Ing. habil. Bernd Künne

Fortschritt-Berichte VDI

Reihe 13

Fördertechnik/ Logistik Dipl.-Ing. Denis Vukovic, Dortmund

Nr. 59

Methodik zur
3D-Analyse der
Laderaumauslastung
von Transportfahrzeugen

vdi verlag

Vukovic, Denis

Methodik zur 3D-Analyse der Laderaumauslastung von Transportfahrzeugen

Fortschr.-Ber. VDI Reihe 13 Nr. 59. Düsseldorf: VDI Verlag 2021. 208 Seiten, 89 Bilder, 20 Tabellen. ISBN 978-3-18-305913-36, ISSN 0178-9562, € 71,00/VDI-Mitaliederpreis € 63,90.

Für die Dokumentation: Digitale Transportlogistik – Straßengüterverkehr – Nachhaltigkeit – Auslastungsgrad – Volumenauslastung – Laderaumanalyse – 3D-Sensoren – Tiefenbildkamera – Messverhalten – Bewertungssystematik

Den Themenschwerpunkt der Arbeit bildet die sensorische Erfassung von 3D-Laderaumdaten mittels mehrerer Tiefenbildsensoren, um die Volumenauslastung von Transportfahrzeugen quantifizieren zu können. Die herausgearbeiteten Inhalte sind für Ingenieure, Logistiker und Wissenschaftler als besondere Wissensgrundlage anzusehen, um die unvermeidbaren Transportfahrten fortan ökonomischer und ökologischer durchführen zu können. Anhand einer detaillierten Analyse werden die Auslastungsdefizite verdeutlicht und die ungenutzten Leistungspotenziale aufgezeigt. Aufbauend auf verschiedenen Versuchsreihen erfolgt die Systemauslegung zur Generierung der erforderlichen 3D-Laderaumdaten. Die erarbeiteten Erkenntnisse werden anschließend in eine Auswertsystematik überführt und im Rahmen eines Praxisszenarios validiert. Die Arbeitsergebnisse bilden einen innovativen Beitrag, um zukünftig eine höhere Transporteffizienz zu erzielen.

Bibliographische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet unter http://dnb.ddb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek

(German National Library)

The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie (German National Bibliography); detailed bibliographic data is available via Internet at http://dnb.ddb.de.

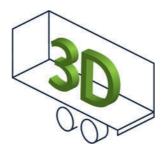
D290 (Diss. Technische Universität Dortmund)

© VDI Verlag GmbH · Düsseldorf 2021

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe (Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung, vorbehalten.

Als Manuskript gedruckt. Printed in Germany. ISSN 0178-9562 ISBN 978-3-18-305913-3

Danksagung


Die vorliegende Dissertation entstand im Rahmen meines Promotionsstudiums an der Technischen Universität Dortmund und neben meiner Tätigkeit als wissenschaftlicher Angestellter am Institut für Distributions- und Handelslogistik (IDH) des VVL e. V., Dortmund. Mein besonderer Dank gilt an erster Stelle meinem Doktorvater Herrn Prof. Dr.-Ing. Rolf Jansen, der mir die Möglichkeit, das Vertrauen, die Unterstützung und insbesondere die erforderlichen Freiräume bei der Durchführung des Promotionsvorhabens gegeben hat. Ferner danke ich Herrn Prof. Dr.-Ing. Bernd Künne für die Übernahme des Koreferats und die finale Begleitung meiner Arbeit. Hierzu gehört vor allem auch die geleistete Hilfestellung bei der Organisation und Vollziehung der Promotionsprüfung in einer pandemiegeprägten Zeit, die für alle Beteiligten eine neue, wenn auch verzichtbare Erfahrung mit sich gebracht hat.

Eine wesentliche Herausforderung bei der Erstellung der Arbeit war es, mehrere fachlich angrenzende sowie fachfremde Themenbereiche zielgerichtet zusammenzuführen. Für die anfängliche Einordnung und Eingrenzung der erforderlichen Inhalte danke ich meinen ehemaligen Bürokollegen. Der fachliche und kollegiale Austausch haben es erst ermöglicht, die entsprechenden Ideen und Lösungsansätze zu konkretisieren. Für den praktischen Versuchsteil möchte ich mich zudem beim "Laborteam" bedanken. Die Bereitstellung der verschiedenen Prüf- und Versuchseinrichtungen (Klimakammer, Schwingtisch, Ablaufbahn etc.) bildeten die Basis, um die umfangreichen Messdatenreihen generieren und auswerten zu können.

Schließlich möchte ich einen besonderen Dank an meine Familie aussprechen, die mir diesen Werdegang ermöglicht und mich bei der Umsetzung meiner Ziele immer unterstützt hat. An dieser Stelle sind insbesondere meine "bessere Hälfte" sowie unser "kleiner Racker" zu erwähnen. Sie haben bei der Entstehung dieser herausfordernden (Freizeit)Arbeit alle Strapazen und Entbehrungen auf sich genommen. Die gegenseitige Unterstützung bei den durchgemachten Höhen und Tiefen bleibt unvergessen. Danke!

Denis Vukovic

Dortmund, im März 2021

Eine Laderaumaufnahme sagt mehr als tausend Worte.

In Anlehnung an Fred R. Banard, 1921: "Ein Bild sagt ...".

Für

A. B. T. V. S. L.

Inhaltsverzeichnis

KurzfassungVI				
Abstra	act	IX		
Abküı	zungsverzeichnis	X		
1 1.1 1.2 1.3	Einführung Motivation und Problemstellung Zielsetzung Struktur der Arbeit	1 4		
2	Darstellung des konzeptionellen Analyseumfeldes	۵		
2.1	Leistungscharakteristik des Straßengüterverkehrs			
2.2	Transportleistung im Spannungsfeld der Nachhaltigkeit			
2.3	Bedeutung und Potenziale der digitalen Transformation			
2.4	Eingrenzung des Untersuchungsrahmens			
3	Theorie und Praxis zur Laderaumauslastung	. 24		
3.1	Analyse der Datenlage			
3.1.1	Datengrundlage für die Auslastungsanalyse			
3.1.2	Zielgrößen zur Kennzahlenbestimmung			
3.2	Beschreibung des Laderaumprofils	29		
3.2.1	Charakterisierung der Ladeobjekte	29		
3.2.2	Spezifizierung der Laderaumbeschaffenheit	32		
3.2.3	Eingrenzung des Belastungsprofils im Laderaum	35		
3.3	Entwicklungsstand und Technologieauswahl	35		
3.3.1	Lösungsansätze zur Erfassung der Volumendaten	36		
3.3.2	Eingrenzung der 3D-Messverfahren	40		
3.4	Spezifizierung der Arbeitsinhalte	44		
4	Konzeptionelle Grundlagen zur Datengenerierung	. 46		
4.1	Architektur und Funktionsweise der eingesetzten Hardware	46		
4.1.1	Technischer Aufbau der Tiefenbildkamera	47		
4.1.2	Messprinzip der Tiefenbildkamera	49		
4.1.3	Generierung der Bilddaten	53		
4.2	Geometrische Modellierung der Tiefenbildkamera	55		
4.2.1	Relevante Bezugssysteme und Modellparameter für den Abbildungsvorgang	55		
4.2.2	Koordinatenüberführung in das Bezugssystem der Tiefenbildkamera	59		
4.2.3	Kameramodell zur projektiven Transformation	61		
4.2.4	Berücksichtigung von Verzeichnungsfehlern	63		
4.2.5	Bestimmung der Pixelkoordinaten	65		

VI Inhaltsverzeichnis

4.2.6	Zusammenfassung der Modellgleichungen	67
4.3	Messgenauigkeit der Tiefenbildkamera	
4.3.1	Genauigkeitsvergleich der intrinsischen Kameraparameter	71
4.3.2	Genauigkeitsanalyse der Tiefenwerte	78
5	Experimentelle Untersuchungen zum Messverhalten	85
5.1	Messabweichungen bei der Datengenerierung	
5.1.1	Allgemeine Einschränkungen einer ToF-Tiefenbildkamera	
5.1.2	Einordnung der Einflussfaktoren	
5.1.3	Eingrenzung der identifizierten und relevanten Einflussfaktoren	
5.2	Einfluss der Temperatur	97
5.2.1	Bestimmung der einwirkenden Temperaturbereiche	97
5.2.2	Untersuchung des temperaturbezogenen Einlaufverhaltens	100
5.2.3	Untersuchung des Kameraverhaltens durch externen Temperatureinfluss	104
5.3	Einfluss der Materialien	109
5.3.1	Eingrenzung der relevanten Oberflächenmaterialien	109
5.3.2	Untersuchung des materialbedingten Reflexionsverhaltens	111
5.3.3	Untersuchung des Tiefenwertes in Abhängigkeit vom Einfallswinkel	115
5.4	Einfluss der Kameraanordnung	119
5.4.1	Kameraanordnung zur sensorischen Erfassung des Laderaums	120
5.4.2	Untersuchung der horizontalen Kameraneigung	121
5.4.3	Untersuchung der vertikalen Kameraverschiebung	125
5.5	Einfluss der mechanischen Transportbelastungen	128
5.5.1	Charakterisierung der einwirkenden mechanischen Transportbelastungen	
5.5.2	Auswirkungen der mechanischen Belastungen auf die Kameraparameter	
5.6	Gesamtbewertung der Versuchsergebnisse	132
6	Methodik zur Verarbeitung der Laderaumdaten	136
6.1	Aufnahme und Vorverarbeitung der akquirierten Rohdaten	
6.1.1	Aufbau der Modellumgebung	137
6.1.2	Struktur der Rohdaten	138
6.1.3	Vorverarbeitung der Ausgangsdaten	
6.2	Ablaufschema zur Verarbeitung der Laderaumdaten	142
6.2.1	Fusion der Einzelszenarien	142
6.2.2	Grobsegmentierung des Gesamtszenarios	144
6.2.3	Feinsegmentierung der Laderaumdaten	146
6.2.4	Approximation des Ladegutvolumens	
6.3	Zusammenfassung der grafischen Verarbeitungskette	151
7	Experimentelle Systemerprobung	152
7.1	Evaluierung der Laderaumanalyse	
7.1.1	Ausgangsszenario zur Datengenerierung	
7.1.2	Verarbeitung der erfassten Laderaumdaten	
7.1.3	Ergebnisanalyse	160

Inhaltsverzeichnis		VI
7.2	Bestimmung einer Auswertesystematik	166
7.2.1	Aufbereitung der Laderaumdaten	166
7.2.2	Auswertesystematik für den Parametervergleich	168
8	Schlussbetrachtung	172
8.1	Zusammenfassung und Erkenntnisgewinn	172
8.2	Ausblick und weiterer Forschungsbedarf	173
Litera	turverzeichnis	177

Kurzfassung

Die digitale Transformation von Produkten, Verfahren und Prozessen nimmt im Zeitalter von cyber-physischen Systemen einen immer höheren Stellenwert ein. Unter logistischen Aspekten wird dabei insbesondere die Effizienzsteigerung entlang der Lieferkette verfolgt, um neue Leistungspotenziale zu erschließen. Die Grundlage hierfür bildet die konsequente Generierung und Bereitstellung von Sensordaten. Während bei der innerbetrieblichen Logistik bereits ausgeprägte digitale Vernetzungen vorzufinden sind, erweisen sich die außerbetrieblichen Logistikprozesse noch als sehr lückenhaft. Im Bereich der Transportlogistik ist in diesem Zusammenhang vor allen Dingen der Laderaum als eine inkonsistente Datenquelle anzusehen. Die Betrachtung der derzeitigen Transportabläufe zeigt, dass eine sensorische Erfassung der Laderaumauslastung nach wie vor nicht praktiziert wird, wodurch große Potenziale vorhandener Transportkapazitäten ungenutzt bleiben. Die konsequente Erfassung der relevanten Auslastungsdaten würde jedoch nicht nur einen erheblichen Systemvorteil für den Straßengüterverkehr mit sich bringen, sondern vor allen Dingen auch einen ökonomisch und ökologisch vertretbareren Straßengütertransport ermöglichen. Zur konsequenten Umsetzung fehlen allerdings - trotz der aktuellen technischen Entwicklungen im Nutzfahrzeugsegment - innovative Methoden und Instrumente, die es ermöglichen, den Laderaum digital zu erfassen, die volumenbezogene Auslastung zu bestimmen sowie die Transporteffizienz anforderungsgerecht zu bewerten.

Zur Behebung dieser Problematik wird im Rahmen dieser Arbeit eine Methodik zur dreidimensionalen Erfassung des Laderaums mittels mehrerer ToF-Tiefenbildsensoren entwickelt. Mithilfe einer intelligenten Aufbereitung und Verknüpfung der generierten Rohdaten wird eine 3D-Rekonstruktion der betrachteten Laderaumszenen ermöglicht, die die Basis zur Bestimmung der Volumenauslastung bildet. Neben der Systemauslegung und Datengenerierung steht insbesondere die Bewertung des Kameramessverhaltens im Fokus. Aufbauend auf diesen Erkenntnissen folgt die Erarbeitung eines Analyseschemas, um die einzelnen Laderaumszenen zu bündeln, die relevanten Ladeobjekte zu identifizieren sowie das tatsächlich genutzte Laderaumvolumen zu ermitteln. Abschließend erfolgt die Evaluierung der erarbeiten Methodik anhand eines Referenzszenarios. Dabei wird zusätzlich eine Bewertungssystematik eingeführt, um die Transporteffizienz in Abhängigkeit der Laderaumauslastung darzustellen.

Abstract

The digital transformation of products, procedures and processes is becoming increasingly important in the age of cyberphysical systems. From a logistical point of view, particular focus is on the increase in efficiency along the supply chain to tap new performance potential. The basis for this is the consistent generation and provision of sensor data. While there are already strong digital networks in internal logistics, external logistics processes are still very incomplete. In the area of transport logistics, the cargo space, in particular, can be viewed as an inconsistent data source. A look at the current transport processes shows that sensory recording of load capacity utilisation is still not practiced, which means that significant potentials of existing transport capacity remain unused. The consistent recording of the relevant utilisation data would not only yield a significant system advantage for road freight transport, but above all would also enable more economically and ecologically justifiable road freight transport. However, despite the current technical developments in the commercial vehicle segment, there is a lack of innovative methods and instruments for consistent implementation, making it possible to digitally record cargo space, determine volume-related capacity utilisation and evaluate transport efficiency according to requirements.

To remedy this problem, a methodology for the three-dimensional recording of cargo space through several ToF depth image sensors is the goal within this thesis. With the help of intelligent preparation and linking of the generated raw data, a 3D reconstruction of the considered cargo space scenarios will be developed, which forms the basis for determining the volume utilisation. In addition to system design and data generation, the focus is especially on evaluating the camera measurement behaviour. Building on these findings, an analysis scheme can be developed to bundle individual cargo space scenarios, identify relevant cargo objects and determine the actually used cargo space volume. Finally, the methodology developed is evaluated using a reference scenario. In addition, an evaluation system is introduced to show transport efficiency as a function of cargo space utilisation.

Abkürzungsverzeichnis

ASTM American Society for Testing and Materials
CMOS Complementary Metal-Oxide-Semiconductor

CV Computer Vision
CW Continious Wave

DIN Deutsches Institut für Normung
EDI Electronic Data Interchange
EG Europäische Gemeinschaft
EPS Expandiertes Polystyrol
EUL Efficient Unit Loads

GFK Glasfaserverstärkter Kunststoff

GK Graukarte

ICP Iterative Closest Point

IR Infrarot

ISTA International Safe Transit Association

ISO International Organisation for Standardisation

KBA Kraftfahrt-Bundesamt
KNN K-Nearest-Neighbours
LED Licht emittierende Diode
LiDAR Light Detection and Ranging

MHz Megahertz
NIR Nahinfrarot
OBU On-Board-Unit
PE Polyethylen
PP Polypropylen

PSD Power Spectral Density

PVC Polyvinylchlorid

RANSAC RANdom-SAmple-Consensus-Algorithm

RGB Rot Grün Blau (Farbraum)

RMS Root Mean Square

SDK Software Development Kit

SoC System on Chip
ToF Time of Flight
USB Universal Serial Bus
XPS Extrudiertes Polystyrol