# Fortschritt-Berichte VDI

## VDI

## Reihe 8

Mess-, Steuerungs- und Regelungstechnik Dipl.-Ing. Radoy Stanchev, Darmstadt

## Nr. 1255

## Ein neuer Ansatz zur Zustandsraumdarstellung, Systemanalyse und Regelung von Drei-Wege-Autoabgaskatalysatoren

ia

Berichte aus dem

Institut für Automatisierungstechnik und Mechatronik der TU Darmstadt

eneriert durch IP '3.12.155.211 ellen und Weitergeben von Ko

https://doi.org/10.51202/9783186255082-I Generiert durch IP '3.12.155.211', am 03.06.2024, 22:03:49. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

## Ein neuer Ansatz zur Zustandsraumdarstellung, Systemanalyse und Regelung von Drei-Wege-Autoabgaskatalysatoren

Vom Fachbereich Elektrotechnik und Informationstechnik der Technischen Universität Darmstadt zur Erlangung des Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Dissertation

von

Dipl.-Ing. Radoy Stanchev

geboren am 10. Februar 1985 in Sevlievo

Referent: Korreferent: Prof. Dr.-Ing. Ulrich Konigorski Prof. Dr.-Ing. Herbert Vogel

Tag der Einreichung:1Tag der Prüfung:6

November 2016
 Dezember 2016



D 17 · Darmstadt 2017

https://doi.org/10.51202/9783186255082-I Generiert durch IP '3.12.155.211', am 03.06.2024, 22:03:49. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

https://doi.org/10.51202/9783186255082-I Generiert durch IP '3.12.155.211', am 03.06.2024, 22:03:49. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

# Fortschritt-Berichte VDI

## Reihe 8

Mess-, Steuerungsund Regelungstechnik Dipl.-Ing. Radoy Stanchev, Darmstadt

Nr. 1255

Ein neuer Ansatz zur Zustandsraumdarstellung, Systemanalyse und Regelung von Drei-Wege-Autoabgaskatalysatoren

Berichte aus dem

Institut für Automatisierungstechnik und Mechatronik der TU Darmstadt



### Stanchev, Radoy

Ein neuer Ansatz zur Zustandsraumdarstellung, Systemanalyse und Regelung von Drei-Wege-Autoabgaskatalysatoren

Fortschr.-Ber. VDI Reihe 8 Nr. 1255. Düsseldorf: VDI Verlag 2017. 156 Seiten, 73 Bilder, 4 Tabellen. ISBN 978-3-18-525508-3, ISSN 0178-9546, € 57,00/VDI-Mitgliederpreis € 51,30.

**Für die Dokumentation:** Lambdaregelung – Internal Model Control (IMC) – Abgaskatalysator – Zustandsraummodell – Gewichtsfunktionen – Strukturmaße – Exakte Linearisierung – Modellprädiktive Regelung – Linear-Quadratische Regelung – Laborprüfstand

Die vorliegende Arbeit richtet sich an Ingenieure und Wissenschaftler, die im Bereich der Abgasnachbehandlung von Verbrennungsmotoren tätig sind. Sie umfasst den Entwurf einer Lambdaregelung, die neuartige Modellierung und die systemtheoretische Analyse eines Drei-Wege-Katalysators sowie den Entwurf und den Vergleich von linearen und nichtlinearen Reglern für den Katalysator. Das Katalysatormodell und einige der entworfenen Regler werden an einem Laborprüfstand verifiziert. Das neue Konzept der Gewichtsfunktionen ermöglicht die Transformation von physikochemischen Katalysatormodellen in den Zustandsraum und damit die Nutzung der bewährten Werkzeuge der Regelungstechnik. Die Darstellung im Zustandsraum erlaubt die Berechnung von Strukturmaßen und damit den quantitativen Vergleich verschiedener Betriebspunkte oder Katalysatoren miteinander. Des Weiteren werden der Reglerentwurf mittels exakter Ein-/ Ausgangslinearisierung oder die modellbasierte Parametrierung eines LQ-Reglers ermöglicht. Die Methoden in dieser Dissertation können auch auf andere Katalysatortypen oder chemische Systeme angewendet werden.

#### Bibliographische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet unter http://dnb.ddb.de abrufbar.

#### Bibliographic information published by the Deutsche Bibliothek

(German National Library) The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie (German National Bibliography); detailed bibliographic data is available via Internet at http://dnb.ddb.de.

D 17

### © VDI Verlag GmbH · Düsseldorf 2017

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe (Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung, vorbehalten.

Als Manuskript gedruckt. Printed in Germany. ISSN 0178-9546 ISBN 978-3-18-525508-3

## Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Automatisierungstechnik und Mechatronik, Fachgebiet Regelungstechnik und Mechatronik der Technischen Universität Darmstadt. Die dargestellten Ergebnisse wurden von mir bei der Bearbeitung des vom Bundesministerium für Bildung und Forschung geförderten Projekts "ReffKat" erzielt.

Es würde mich freuen, wenn die Ergebnisse dieser Arbeit in die Praxis umgesetzt würden und die erarbeiteten Methoden auf andere Problemstellungen angewendet würden. Die Erde mit ihrer biologischen Vielfalt ist im Universum einzigartig. Wir als Menschen stehen in der Verantwortung, sparsam und nachhaltig mit ihren Ressourcen umzugehen.

Ich bedanke mich bei allen, die mich während meiner Zeit als wissenschaftlicher Mitarbeiter und während der Erstellung dieser Arbeit unterstützt haben. Mein besonderer Dank gilt Herrn Prof. Dr.-Ing. Ulrich Konigorski, der stets ein offenes Ohr hatte und für interessante fachliche Diskussionen bereit war.

Bei Herrn Prof. Dr.-Ing. Herbert Vogel vom Ernst-Berl-Institut für Makromolekulare und Technische Chemie an der Technischen Universität Darmstadt bedanke ich mich für die freundliche Übernahme des Korreferates und das Interesse an meiner Arbeit.

Das Projekt "ReffKat" wurde unter der Federführung der Firma Umicore AG & Co. KG durchgeführt und ohne die aktive Beteiligung zahlreicher Mitarbeiter wäre das Projekt sicher nicht gelungen. An dieser Stelle bedanke ich mich bei allen beteiligten Mitarbeitern für die gute Zusammenarbeit. Insbesondere möchte ich Herr Dr. Martin Votsmeier hervorheben, der das Projekt ins Leben gerufen hat und als Projektleiter für sein Gelingen sorgte. Weiterhin wären die Messungen am Laborprüfstand ohne die Unterstützung von Jürgen Schell, Roland Adam und Barry van Setten nicht gelungen, wofür ich mich bei ihnen bedanke.

Jan Rink, der als wissenschaftlicher Mitarbeiter am Projekt beteiligt war, möchte ich besonders dafür danken, dass er mir in allen Fragen der Chemie zur Seite stand.

Ich bedanke mich noch bei meinen Institutskollegen, dem Sekretariat und der Werkstatt für die angenehme Arbeitsatmosphäre. Herausheben möchte ich hier Alfred Gross, bei dem ich noch während meines Studiums als wissenschaftliche Hilfskraft erste Einblicke in die Arbeitsweise am Institut erlangen konnte.

Abschließend bedanke ich mich bei meiner Familie, die mir das Studium ermöglicht hat und stets Zuversicht in das Gelingen meiner Promotion hatte.

Darmstadt, im November 2016 Radoy Stanchev

## Inhaltsverzeichnis

| Symbole und Abkürzungen VI<br>Zusammenfassung X |       |                                                                     |    |
|-------------------------------------------------|-------|---------------------------------------------------------------------|----|
|                                                 |       |                                                                     | х  |
| 1                                               | Einfi | ührung                                                              | 1  |
|                                                 | 1.1   | Einleitung                                                          | 1  |
|                                                 |       | 1.1.1 Schadstoffe im Motorabgas                                     | 1  |
|                                                 |       | 1.1.2 Anfänge der Abgasnachbehandlung                               | 3  |
|                                                 |       | 1.1.3 Hauptkomponenten des Systems zur Abgasnachbehandlung          | 4  |
|                                                 |       | 1.1.4 Stand der Technik                                             | 7  |
|                                                 | 1.2   | Problemstellung und Ziele der Arbeit                                | 9  |
|                                                 | 1.3   | Struktur der Arbeit                                                 | 11 |
| 2                                               | Der   | Lambdaregelkreis                                                    | 14 |
|                                                 | 2.1   | Modellierung der Motorkomponenten im Lambdaregelkreis               | 15 |
|                                                 | 2.2   | Regelung des Lambdawertes                                           | 19 |
|                                                 |       | 2.2.1 Anforderungen an den Lambdaregelkreis und Randbedingungen     | 20 |
|                                                 |       | 2.2.2 Die IMC-Struktur                                              | 23 |
|                                                 |       | 2.2.3 Entwurf des Lambdareglers                                     | 25 |
|                                                 | 2.3   | Implementierung des Lambdareglers                                   | 31 |
|                                                 | 2.4   | Zusammenfassung                                                     | 31 |
| 3                                               | Kata  | lysatormodell                                                       | 34 |
|                                                 | 3.1   | Modellbildung                                                       | 38 |
|                                                 |       | 3.1.1 Modellierung der Massentransportprozesse                      | 38 |
|                                                 |       | 3.1.2 Modellierung der chemischen Reaktionen                        | 40 |
|                                                 |       | 3.1.3 Vereinfachung der Modellgleichungen                           | 42 |
|                                                 |       | 3.1.4 Emissionsmodell für den Motor                                 | 43 |
|                                                 | 3.2   | Modelldarstellung mittels Gewichtsfunktionen                        | 45 |
|                                                 | 3.3   | Erweiterung auf andere Reaktionsschemata                            | 48 |
|                                                 | 3.4   | Zusammenfassung                                                     | 51 |
| 4                                               | Syst  | Systemanalyse                                                       |    |
|                                                 | 4.1   | Die Gewichtsfunktionen aus Sicht der Systemtheorie und der Chemie   | 53 |
|                                                 | 4.2   | Untersuchung der Stabilität                                         | 56 |
|                                                 | 4.3   | Linearisierung des Modells                                          | 59 |
|                                                 | 4.4   | Berechnung von Strukturmaßen                                        | 62 |
|                                                 | 4.5   | Einfluss der Motorarbeitspunktparameter auf die Systemeigenschaften | 67 |

4.6 Zusammenfassung Parameteridentifikation 5 5.1 5.2 Identifikationstrajektorie und Identifikationsverfahren . . . . . . . . . . . . . . . . 5.3 Parameteridentifikation mit Messdaten 5.4 Zusammenfassung 6 Regelung des Katalysators 6.1 6.2 6.2.1 Reglerentwurf mittels exakter Ein-/Ausgangslinearisierung . . . . . . 6.3

#### 91 98 Regelung der Konvertierungsraten 6.3.1 101 6.3.2 Reglerentwurf mittels exakter Ein-/Ausgangslinearisierung . . . . . . 107 6.3.3 109 6.4 112 Vergleich mit Simulationsdaten 6.4.1 112 6.4.2 Vergleich mit Messdaten 115 6.5 Zusammenfassung 122 Zusammenfassung und Ausblick 124

71

72

73

77

78

84

86

89

90

| Anhang    |                                                                   | 128 |
|-----------|-------------------------------------------------------------------|-----|
| A.1       | Parameter der Motorarbeitspunkte                                  | 128 |
| A.2       | Laborprüfstand                                                    | 128 |
| A.3       | Regularität der Matrix A                                          | 131 |
| A.4       | A.4 Beispiel für ein Reaktionsschema mit einer Oberflächenspezies |     |
| A.5       | Beispiel für ein Reaktionsschema mit mehreren Oberflächenspezies  | 133 |
| Literatur | verzeichnis                                                       | 135 |

7

## Symbole und Abkürzungen

Die nachfolgend aufgeführten Größen und Bezeichnungen sind global, d. h. für die ganze Arbeit, gültig. Größen, die nur lokal verwendet werden, sind in der weiteren Arbeit definiert. Die Notation orientiert sich jeweils an die angegebenen Quellen, um weiterführende Recherchen zu erleichtern.

#### Lateinische Symbole

| Nullmatrix der Dimension $x \times x$ bzw. $x \times y$                   |
|---------------------------------------------------------------------------|
| Systemeigenwert                                                           |
| Präexponentieller Faktor in der Arrhenius-Gleichung                       |
| Katalytisch wirksame Fläche, Querschnittsfläche des Trägerkörpers, Geome- |
| trische Oberfläche des Trägerkörpers                                      |
| Systemmatrizen in der differential-algebraischen Modelldarstellung        |
| Systemmatrix des linearisierten Zustandsraummodells                       |
| Zusammengefasste Parameter, siehe Gleichungen (3.20) und (3.21)           |
| Eingangsmatrix in der differential-algebraischen Modelldarstellung        |
| Eingangsmatrix des linearisierten Zustandsraummodells                     |
| Konzentration in der Gasphase                                             |
| Vektor mit Konzentrationen in der Gasphase                                |
| Ausgangsmatrix des linearisierten Zustandsraummodells                     |
| Aktivierungsenergie einer Reaktion                                        |
| Gewichtsfunktion                                                          |
| Vektor mit Gewichtsfunktionen                                             |
| IMC-Filter                                                                |
| Führungs- bzw. Störübertragungsfunktion des Lambdaregelkreises            |
| Matrix zur Berechnung der Gaskonzentrationen in einer Modellzelle         |
| Enthalpie                                                                 |
| Einheitsmatrix der Dimension $x \times x$ bzw. $x \times y$               |
| Gütemaß des LQ-Reglers und der NMPC                                       |
| Geschwindigkeitskonstante einer Reaktion, Verstärkung                     |
| Massentransportkoeffizient                                                |
| Additive bzw. multiplikative Modellunsicherheit                           |
| Sauerstoffspeicherkapazität                                               |
| Abgasmassenstrom                                                          |
| Motorlastmoment, molare Masse                                             |
| Motordrehzahl                                                             |
|                                                                           |

| $n_{\rm c}, n_{\rm g}, n_{\rm s}$ | Anzahl der Modellzellen, der Gas- und der Oberflächenspezies  |
|-----------------------------------|---------------------------------------------------------------|
| $p_{\rm exh}$                     | Abgasdruck                                                    |
| Р                                 | Zu regelnde Strecke                                           |
| $\tilde{P}, \tilde{P}_{\lambda}$  | Übertragungsfunktion des Motormodells bzw. der Lambdasonde    |
| Q                                 | Übertragungsfunktion des Lambdareglers                        |
| Q                                 | Matrix zur Gewichtung der Sauerstofffüllstände im Gütemaß $J$ |
| r                                 | Reaktionsgeschwindigkeit                                      |
| R                                 | Universelle Gaskonstante                                      |
| R                                 | Gewichtungsfaktor der Stellgröße im Gütemaß J                 |
| <i>s</i>                          | Reaktionsquellterm                                            |
| S                                 | Entropie                                                      |
| $S_{x,p}^{\text{rel}}$            | Relative Sensitivität des Parameters p bezüglich der Größe x  |
| te                                | Kraftstoffeinspritzzeit                                       |
| $T_{\rm g}, T_{\rm s}$            | Temperatur in der Gasphase bzw. des Trägerkörpers             |
| $U_{ m su}$                       | Spannung der Sprung-Lambdasonde hinter dem Katalysator        |
| V                                 | Ansatzfunktion für eine Ljapunov-Funktion                     |
| w                                 | Komplexes Gewicht beim IMC-Reglerentwurf                      |
| X                                 | Konzentration im Washcoat, Atomanzahl                         |
| X                                 | Vektor mit Konzentrationen im Washcoat                        |
| У                                 | Ausgang des Systemmodells, Atomanzahl                         |
| Ζ                                 | Axiale Koordinate, Atomanzahl                                 |
|                                   |                                                               |

#### Griechische Symbole

| η                                | Konvertierungsrate                                                                                                                            |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Θ                                | Sauerstofffüllstand bzw. Belegungsgrad einer Oberflächenspezies                                                                               |
| Θ                                | Vektor mit den Sauerstofffüllständen aller Modellzellen bzw. mit den Bele-<br>gungsgraden aller Oberflächenspezies in einer Zelle des Modells |
| $\kappa_{\rm B}, \kappa_{\rm C}$ | Steuerbarkeits- bzw. Beobachtbarkeitsmaß nach Lükel/Müller                                                                                    |
| λ                                | Lambdawert                                                                                                                                    |
| $\lambda_d$                      | Lambdaabweichung im Motorabgas                                                                                                                |
| $\lambda_{m}$                    | Lambdawert im Motorabgas                                                                                                                      |
| $\lambda_{\mathrm{u}}$           | Stellgröße des Lambdareglers                                                                                                                  |
| $\lambda_{\rm w}$                | Sollwert des Lambdaregelkreises                                                                                                               |
| ν                                | Vorzeichenbehafteter stöchiometrischer Koeffizient                                                                                            |
| τ                                | Abtastzeit                                                                                                                                    |
| $\tau_{(\cdot)}$                 | Zeitkonstante                                                                                                                                 |
| $	au_{ m d}$                     | Totzeit des Motormodells                                                                                                                      |
| $	au_{ m m}$                     | Zeitkonstante des Motormodells                                                                                                                |
| ω                                | Kreisfrequenz                                                                                                                                 |
| $	au_{ m m}$                     | Zeitkonstante des Motormodells<br>Kreisfrequenz                                                                                               |

#### Indizes

| i                                           | Gasspezies, lokaler Index                                             |
|---------------------------------------------|-----------------------------------------------------------------------|
| $(\cdot)^{\text{in}}, (\cdot)^{\text{out}}$ | Größe am Eingang bzw. am Ausgang des Katalysators                     |
| j                                           | Nummer der Reaktion bzw. der Teilreaktion                             |
| $(\cdot)_{(j)}$                             | Mit der Reaktion j assoziierte Gas- bzw. Oberflächenspezies           |
| k                                           | Nummer einer Zelle des nach dem Ort diskretisierten Modells           |
| lsu, su                                     | Lambdasonde vor bzw. hinter dem Katalysator                           |
| S                                           | Oberflächenspezies                                                    |
| $\overline{(\cdot)}$                        | Mittelwert, konjugiert komplex, obere Schranke der Modellunsicherheit |
| $\tilde{(\cdot)}$                           | Schätzwert                                                            |
| $(\cdot)_{\infty}$                          | Stationärer Wert                                                      |

#### **Chemische Spezies**

| $Ce_2O_3$ , $Ce_2O_4$ | Ceroxid in reduzierter bzw. oxidierter Form |
|-----------------------|---------------------------------------------|
| CO                    | Kohlenmonoxid                               |
| $CO_2$                | Kohlenstoffdioxid                           |
| H <sub>2</sub>        | Wasserstoff                                 |
| H <sub>2</sub> O      | Wasser                                      |
| N <sub>2</sub>        | Stickstoff                                  |
| NO                    | Stickstoffmonoxid                           |
| O <sub>2</sub>        | Sauerstoff                                  |
|                       |                                             |

### Abkürzungen

| cpsi   | Cells Per Square Inch              |
|--------|------------------------------------|
| E/A    | exakte Ein-/Ausgangslinearisierung |
| ECU    | Electronic Control Unit            |
| FTP 75 | Federal Test Procedure 75          |
| IMC    | Internal Model Control             |
| LQ     | Linear Quadratisch                 |
| SCR    | Selective Catalytic Reduction      |
|        |                                    |

## Zusammenfassung

Zur effizienten Abgasnachbehandlung bei Benzinmotoren hat sich seit mehr als drei Jahrzehnten der Drei-Wege-Katalysator bewährt. Die physikalische Modellbildung des Katalysators führt auf nichtlineare, partielle Differentialgleichungen. Je nach Detaillierungsgrad der physikochemischen Modellbildung können die Katalysatormodelle sehr komplex ausfallen und diese Komplexität erschwert die systematische systemtheoretische Analyse des Katalysators. Daher beschränkt sich der Reglerentwurf in der Literatur auf recht einfache Katalysatormodelle und meist lineare Regelungskonzepte. Der Umstand, dass die bekannten Katalysatormodelle nicht in Form von Zustandsraummodellen vorliegen, erschwert den Einsatz der bewährten Methoden der Regelungstechnik weiter.

In der vorliegenden Arbeit wird ein neuer Ansatz zur Erstellung nichtlinearer Zustandsraummodelle aus vereinfachten physikochemischen Katalysatormodellen präsentiert. Als Ausgangspunkt dient ein Modell der Sauerstoffspeicherung durch Ceroxid, das komplexer als die bisher zum Reglerentwurf eingesetzten Modelle ist. Auf dem Weg zur Herleitung des Zustandsraummodells werden hier die sogenannten Gewichtsfunktionen definiert. Die Gewichtsfunktionen ermöglichen eine kompakte und intuitive Beschreibung des Katalysatormodells und ihre Erweiterung auf andere Reaktionsschemata wird detailliert untersucht.

Die Modelldarstellung im Zustandsraum erlaubt die analytische Systemanalyse, wodurch z. B. die asymptotische Stabilität des Katalysators nachgewiesen und das nichtlineare Modell analytisch linearisiert wird. Ein wesentlicher Aspekt der Systemanalyse ist die Berechnung von Strukturmaßen, die den quantitativen Vergleich verschiedener Katalysatoren ermöglichen und so den Materialentwicklungsprozess unterstützen können. Bevor das Modell in der Praxis eingesetzt wird, werden zuerst seine Parameter optimiert. Anhand von analytischen Sensitivitätsanalysen werden die für das Ein-/Ausgangsverhalten wichtigen Modellparameter identifiziert und anschließend mit Messdaten von einem Laborprüfstand optimiert.

Die Modellbildung und die Systemanalyse liefern tiefe Einblicke in die Systemstruktur und das Systemverhalten, die beim Erstellen eines Regelungskonzeptes für den Katalysator nützlich sind. Aufgrund der schlechten Beobachtbarkeit des Katalysators wird ein Open-Loop-Beobachter eingesetzt. Das stark nichtlineare Systemverhalten motiviert des Weiteren den Entwurf von nichtlinearen Reglern. Die Arbeit beginnt mit dem Entwurf eines unterlagerten Lambdaregelkreises und schließt mit dem Entwurf und dem Vergleich von vier dem Lambdaregelkreis überlagerten Emissionsreglern. Zwei Emissionsregler werden mittels exakter Ein-/Ausgangslinearisierung entworfen, einer wird in Form einer nichtlinearen modellprädiktiven Regelung ausgeführt und die linearen Regler sind durch einen LQ-Regler vertreten. Der LQ-Regler und einer der mittels exakter Ein-/Ausgangslinearisierung entworfenen Regler werden am Laborprüfstand implementiert und einer klassischen Lambda-Eins-Regelstrategie gegenübergestellt.