Fortschritt-Berichte VDI

VDI

Reihe 8

Mess-, Steuerungs- und Regelungstechnik

M.Sc. Mario Aldag, Amelinghausen

Nr. 1265

Regelung rotativer Direktantriebe bei Servoanwendungen

https://doi.org/10.51202/9733186265081-I Generiert durch IP '18.118.165.24', am 18.05.2024, 05:31:07 tellen und Weitergeben von Kopien dieses PDFs ist nicht zulässi

https://doi.org/10.51202/9783186265081-I Generiert durch IP '18.118.165.24', am 18.05.2024, 05:31:07. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

Regelung rotativer Direktantriebe bei Servoanwendungen

Von der Fakultät für Elektrotechnik der Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg zur Erlangung des akademischen Grades eines Doktor-Ingenieurs genehmigte

> Dissertation vorgelegt von

Mario Aldag, M.Sc. aus Hamburg

Hamburg, 2019

Erstgutachter: Zweigutachter: Univ. Prof. Dr.-Ing. Joachim Horn Univ. Prof. Dr.-Ing. Christian Bohn

Tag der mündlichen Prüfung:

29.03.2019

Fortschritt-Berichte VDI

Reihe 8

Mess-, Steuerungsund Regelungstechnik M.Sc. Mario Aldag, Amelinghausen

Regelung rotativer Direktantriebe bei Servoanwendungen

Aldag, Mario Regelung rotativer Direktantriebe bei Servoanwendungen

Fortschr.-Ber. VDI Reihe 08 Nr. 1265. Düsseldorf: VDI Verlag 2019. 166 Seiten, 74 Bilder, 14 Tabellen. ISBN 978-3-18-526508-2 ISSN 0178-9546, € 62,00/VDI-Mitgliederpreis € 55,80.

Für die Dokumentation: Zwei-Massen-Schwinger – Polkompensation – Notch-Filter – Systemidentifikation – echtzeitfähige Resonanzfrequenzerkennung – Servoantrieb – Kaskadenregelung

Diese Arbeit wendet sich an Ingenieure der Regelungstechnik, die Resonanzfrequenzen anwendungsnah auf einer echtzeitfähigen Systemplattform unter begrenzten Ressourcen identifizieren und kompensieren möchten. Mechanische Resonanzfrequenzen, wie sie beispielsweise beim automatisierten Werkstückwechsel bei Maschinen auftreten können, können zu einem resonanten und instabilen Regelverhalten führen. Liegen die Resonanzfrequenzen außerhalb der Reglerbandbreite, kann die statische Reglerauslegung eines kaskadierten Servoreglers dies lediglich über eine geringere Kreisverstärkung kompensieren. Dies führt jedoch bei dynamischen Verfahrbewegungen zu höheren Positionsabweichungen im Servosystem. Diese Arbeit stellt als Lösungsmöglichkeit einen Algorithmus vor, der eine unbegrenzte Anzahl an Resonanzfrequenzen auf einem industrieüblichen digitalen Signalprozessor bei einer Abtastrate von 32 kHz detektieren und kompensieren kann.

Bibliographische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet unter www.dnb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek

(German National Library) The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie (German National Bibliography); detailed bibliographic data is available via Internet at www.dnb.de.

> Dissertation Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg

© VDI Verlag GmbH · Düsseldorf 2019

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe (Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung, vorbehalten.

Als Manuskript gedruckt, Printed in Germany. ISSN 0178-9546 ISBN 978-3-18-526508-2

> https://doi.org/10.51202/9783186265081-I Generiert durch IP '18.118.165.24', am 18.05.2024, 05:31:07. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig.

DANKSAGUNG

Diese Arbeit entstand während meiner Zeit als wissenschaftlicher Mitarbeiter an der Professur für Regelungstechnik der Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg als Drittmittelprojekt mit einem norddeutschen Maschinenbauunternehmen. Für die Einrichtung des Drittmittelprojekts und die Ermutigung zum Forschen an diesem spannenden, aktuellen und praxisnahen Thema möchte ich mich bedanken.

Mein besonderer Dank geht an Herrn Prof. Dr.-Ing. Joachim Horn, dem Lehrstuhlinhaber der Professur für Regelungstechnik an der Fakultät für Elektrotechnik für die wissenschaftliche Betreuung der Arbeit, die stets guten und fruchtbaren Diskussionen zum Thema und die Übernahme des Hauptreferats.

Herrn Prof. Dr.-Ing. Christian Bohn danke ich für die Übernahme des Zweitreferats, das fachliche Interesse am Thema und seine fachlichen Anregungen sowie Herrn Prof. Dr.-Ing. Stefan Dickmann für die Übernahme des Prüfungsvorsitzes.

Ich möchte mich auch bei meinen Kollegen an der Professur für Regelungstechnik an der Helmut-Schmidt-Universität und den Kollegen des Industriepartners für die Anregungen, Korrekturen zur Arbeit und Arbeitshilfen, zum Beispiel zur Fertigung des Teststands, bedanken. Die vielfältigen und intensiven inhaltlichen Diskussionen haben sehr zum Ergebnis dieser Arbeit beigetragen.

Dieses Vorhaben wäre ohne die Unterstützung meiner Verlobten Christin, meiner Familie sowie von Freunden nicht möglich gewesen. Daher gilt auch ihnen mein herzlichster Dank.

Amelinghausen im Juli 2019

Mario Aldag

INHALTSVERZEICHNIS

No	Nomenklatur V Symbole				
Sy					
Κι	urzfassung	XVI			
1	Einleitung 1.1 Zielsetzung und Aufbau der Arbeit	1 4			
2	Stand der Technik 2.1 Regelung permanentmagneterregter Synchronmaschinen 2.1.1 Koordinatensysteme / Raumzeigerdarstellung 2.1.2 Modellierung des dynamischen Verhaltens von Drehfeldmaschinen 2.1.3 Flussverkettungen 2.1.4 Permanentmagneterregte Synchronmaschine 2.1.5 Regelung von PMSM 2.2 Modellierung der mechanischen Regelstrecke 2.3 Regelung des Gesamtsystems 2.4 Identifikationsverfahren von Regelstrecken 2.5 Messverfahren zur Spektrumsschätzung 2.5.1 DFT 2.5.2 Goertzel-Algorithmus 2.5.3 Yang-Methode 2.5.4 Welch-Methode	7 7 11 12 13 16 20 23 27 30 32 33 35 36			
3	Entwicklung eines Simulationsmodells 3.1 Modellbildung	39 39 45			
4	Gütemaß zur Beurteilung des Regelverhaltens 4.1 Einführung eines quantitativen Gütemaßes 4.2 Einfluss von sich ändernden Streckeneigenschaften 4.3 Simulationen	49 51 51 52			
5	Identifikation von Regelstrecken bei rotativen Direktantrieben 5.1 Relay-Feedback-Experiment 5.2 Identifikation der Parameter des ZMS	56 56 59			

	5.3	Identifikation eines parametrischen Modells	60
6	Entv	wicklung adaptiver Notch-Filter zur Resonanzunterdrückung	62
•	6.1	Verfahren zur Schätzung des Leistungsdichtespektrums	62
		6.1.1 Methode von Yang	63
		6.1.2 Scanning-Verfahren	66
		6.1.3 Berechnungsmethodik Notch-Filter	67
	6.2	Detektion mehrerer Maxima in einer Messung	69
		6.2.1 Berechnung des relativen Maximums	70
		6.2.2 Nachverarbeitung der Messdaten	71
	6.3	Identifikation der Notch-Filtertiefe sowie -breite	72
	6.4	Simulation	74
	6.5	Validierung am Teststand	77
7	Vali	dierung des Gesamtsystems an Maschinen	79
	7.1	Messsystem / Maschine	79
	7.2	Messkonzept	81
		7.2.1 PRBS-Anregung zur Frequenzgangsmessung	83
		7.2.2 Relay-Feedback-Experiment	84
		7.2.3 Identifikation adaptiver Notch-Filter	85
		7.2.4 Zeitbereichsmessungen	86
	7.3	Messungen an Maschine 1	86
		7.3.1 Verwendete Testwerkstücke	86
		7.3.2 Messung der Regelstrecke	87
		7.3.3 Frequenzgang des Drehzahlregelkreises	88
		7.3.4 Relay-Feedback-Experiment	89
		7.3.5 Messung der Lageabweichung im Zeitbereich	91
	7.4	Messungen an Maschine 2	92
		7.4.1 Verwendete Testwerkstücke	93
		7.4.2 Messung und Identifikation der Regelstrecke	94
		7.4.3 Messung des Frequenzgangs des geschlossenen Drehzahlregelkreises	94
		7.4.4 Relay-Feedback-Experiment	97
		7.4.5 $$ Automatische Identifikation von Resonanzfrequenzen für adaptive $$	
		Notch-Filter	99
		7.4.6 Identifikation der Notch-Filtertiefen und -breiten	101
		7.4.7 Validierung der Regelgüte bei Anwendung adaptiver Notch-Filter .	102
	7.5	Zusammenfassung der Messungen	108
8	Zus	ammenfassung und Ausblick	110
An	hang	9	112
Α	Stat	pilitätsbetrachtung der kaskadierten Regelung	113
- •	A.1	Systembeschreibung	114
		A 1 1 PID-Regler	115
		A 1 2 Notch-Filter	117
			111

	A.2 Stabilitätsbetrachtung 11			
		A.2.1 PID-Regler ohne Notch-Filter	117	
		A.2.2 PID-Regler mit Notch-Filter	119	
		A.2.3 Charakteristische Gleichung	125	
	A.3	Geschlossener Lageregelkreis	126	
в	Res	onanzfrequenzverschiebung	128	
С	Auswirkung von Reglerparametern auf Regelgüte			
D	Herleitung Gleichungen ZMS			
Е	Erpr	obung an einem Teststand	139	
	E.1	Konstruktion	139	
	E.2	Inbetriebnahme des Teststands	143	
Literaturverzeichnis 1				

NOMENKLATUR

CNC	Computerized Numerical Control
DFT	Discrete Fourier Transformation
DGL	D ifferenzial g leichung
DTFT	Discrete Time Fourier Transformation
EMS	Ein-Massen-Schwinger
\mathbf{FFT}	Fast Fourier Transformation
IPMSM	Interior mounted Permanent magnet Synchronous $\mathbf{M} otor$
MMS	$\mathbf{M} \mathbf{e} \mathbf{h} \mathbf{r} \mathbf{\cdot} \mathbf{M} \mathbf{a} \mathbf{s} \mathbf{s} \mathbf{e} \mathbf{n} \mathbf{\cdot} \mathbf{S} \mathbf{c} \mathbf{h} \mathbf{w} \mathbf{i} \mathbf{n} \mathbf{g} \mathbf{r}$
PMSM	${\bf P} ermanent {\bf m} agnet \ erregte \ {\bf S} ynchron {\bf m} aschine$
PRBS	$\mathbf{P} seudo-\mathbf{R} and om-\mathbf{B} inary-\mathbf{S} ignal$
PWM	\mathbf{P} ulsweiten \mathbf{m} odulation
SPMSM	Surface mounted Permanent magnet Synchronous Motor
ZMS	\mathbf{Z} wei- \mathbf{M} assen- \mathbf{S} chwinger

SYMBOLE

Mechanische Parameter

Symbol	Einheit	Bezeichnung
D_{12}	$\rm Nm^{-1}s^{-1}$	mechanische Dämpfung
d	$\rm Nm^{-1}s^{-1}$	mechanische Dämpfung als Modellparameter
d	${ m kg}{ m m}^{-3}$	Stoffdichte
C_{12}	${ m N}{ m m}^{-1}$	mechanische Drehfedersteifigkeit
c	${ m N}{ m m}^{-1}$	mechanische Drehfedersteifigkeit als Modellparameter
$k_{ m F}$	${\rm N}{\rm A}^{-1}$	Kraftkonstante des Motors
m_1	kg	Masse
$\Theta_{\rm A}$	${ m kg}{ m m}^2$	Massenträgheit Arbeitsmaschinenseite
Θ_{M}	${ m kg}{ m m}^2$	Massenträgheit Motorseite
λ	-	Verhältnis von Motor- zu Summenträgheit
Θ_{Sum}	${ m kg}{ m m}^2$	Summenträgheit des Antriebsstrangs
G	${\rm N}{\rm m}^{-2}$	Schubmodul
ω_{Max}	rad	Resonanzfrequenz des ZMS
$\omega_{ m Min}$	rad	Anti-Resonanzfrequenz des ZMS
R_{Max}	$^{\mathrm{dB}}$	Betrag der Übertragungsfunktion des ZMS für $\omega=\omega_{\rm Max}$
R_{Min}	$^{\mathrm{dB}}$	Betrag der Übertragungsfunktion des ZMS für $\omega = \omega_{\text{Min}}$
d_{W}	mm	Wellendurchmesser
$d_{\rm L}$	$\mathbf{m}\mathbf{m}$	Wellenlänge
$r_{\rm Z}$	mm	Zylinderradius
h_{Z}	mm	Zylinderhöhe
$\xi_{ m C}$	Ν	Coulombscher Reibungskoeffizient
$\xi_{\rm V}$	$\rm N/radsec$	Viskoser Reibungskoeffizient

Grundlagen Antriebstechnik

Symbol	Einheit	Bezeichnung
$U_{\rm E}$	V	Effektivwert d. Spannung in Erregerwicklung
U_{1a}	V	Effektivwert d. Spannung in der Statorwicklung a
$u_{1a}(t)$	V	Momentanwert d. Spannung in der Statorwicklung a
$U_{1\mathrm{b}}$	V	Effektivwert d. Spannung in der Statorwicklung b
$u_{1\mathrm{b}}(t)$	V	Momentanwert d. Spannung in der Statorwicklung b
U_{1c}	V	Effektivwert d. Spannung in der Statorwicklung c

Symbol	Einheit	Bezeichnung
$u_{1c}(t)$	V	Momentanwert d. Spannung in der Statorwicklung c
$I_{\rm E}$	А	Strom in Erregerwicklung
I_{1a}	А	Strom in der Statorwicklung a
$I_{1\mathrm{b}}$	А	Strom in der Statorwicklung b
I_{1c}	А	Strom in der Statorwicklung c
$\Psi_{\rm d}$	Wb	Verketteter magnetischer Fluss in Längsrichtung
$\Psi_{\rm PM}$	Wb	Fluss der Permanentmagnete
$\Psi_{ m q}$	Wb	Verketteter magnetischer Fluss in Querrichtung
$L_{\rm d}$	Н	Induktivität in d-Richtung
L_{q}	Н	Induktivität in q-Richtung
Ω_L	$\mathrm{rad}/\mathrm{sec}$	Elektrische Kreisfrequenz
Ω_M	$\mathrm{rad}/\mathrm{sec}$	Mechanische Kreisfrequenz
P_{Klemmen}	W	An die Klemmen der elektrischen Maschine abgegebene Wirkleistung.
$P_{\rm el,mech}$	W	An die Klemmen der elektrischen Maschine abgegebener Anteil an mech. Leistung
$P_{\rm el,v}$	W	An die Klemmen der elektrischen Maschine abgegebener Anteil an Verlustleistung
Z_p	-	Polpaarzahl
$U_{\rm d}$	V	Spannung in Längsrichtung
$\widetilde{U}_{\mathrm{d}}$	V	Entkoppelte Spannung in Längsrichtung
$U_{\mathbf{q}}$	V	Spannung in Querrichtung
$\widetilde{U}_{\mathbf{q}}$	V	Entkoppelte Spannung in Querrichtung
$I_{\rm d}$	А	Statorstrom in Längsrichtung
$I_{\rm D}$	А	Strom in Längsrichtung der Dämpferwicklung
$I_{\rm d,r}$	А	Sollwert des Statorstroms in Längsrichtung
M	Н	Gegeninduktivität im Motor
$I_{\rm Q}$	А	Strom in Querrichtung der Dämpferwicklung
$I_{\rm q,r}$	А	Sollwert des Statorstroms in Querrichtung
$^{K}\Omega$	$\mathrm{rad}/\mathrm{sec}$	Kreisfrequenz des Rotors in Bezug zum Stator
$^{K}\beta$	rad	Elektrischer Winkel des Rotors bezogen auf den Stator.
$^{L}\Omega$	$\mathrm{rad}/\mathrm{sec}$	Kreisfrequenz des Rotors in Bezug zum Stator
$^{\mathrm{L}}\beta$	rad	Elektrischer Winkel des Rotors bezogen auf den Stator.
${}^{\rm S}\vec{\Psi}_1$	Wb	Statorfluss im ortsfesten Statorkoordinatensystem
${}^{\mathrm{L}}\vec{\Psi}_{1}$	Wb	Statorfluss im Rotorkoordinatensystem
${}^{\rm S}\vec{U}_1$	V	Allgemeine Spannung in vektorieller Form, zum Beispiel in Motorwicklung
${}^{\rm S}\!\vec{u}_1$	А	Allgemeiner momentaner Strom in vektorieller Form, zum Beispiel in Motorwicklung

Symbol	Einheit	Bezeichnung
${}^{\rm L}\vec{U}_1$	V	Statorspannung in vektorieller Form bezogen auf das Rotorsystem
$U_{1\beta}$	V	Komponente der Statorspannung
$u_{1\beta}$	V	Komponente der Statorspannung als Momentanwert
$U_{1\alpha}$	V	Komponente der Statorspannung
$u_{1\alpha}$	V	Komponente der Statorspannung als Momentanwert
${}^{\rm S}\!\beta_{\rm U1}$	rad	Winkel der Statorspannung bezogen auf das Statorsystem
$\vec{I_1}$	А	Allgemeiner Strom in vektorieller Form, zum Beispiel in Motorwicklung
$I_{1\mathrm{A}}$	А	Komponente des Statorstroms
$I_{1\beta}$	А	Komponente des Statorstroms
$I_{1\alpha}$	А	Komponente des Statorstroms
${}^{\mathrm{S}}\vec{I_{1}}$	А	Vektorieller Statorstrom bezogen auf das ortsfeste Statorko- ordinatensystem
${}^{\mathrm{S}}\beta_{\mathrm{I1}}$	rad	Winkel des Stroms bezogen auf das Statorsystem
${}^{S}\Omega_{1}$	$\mathrm{rad}/\mathrm{sec}$	Winkelgeschwindigkeit bezogen auf das Statorsystem
${}^{\rm L}\vec{I_2}$	А	Rotorstrom in vektorieller Form, zum Beispiel in Motorwicklung
${}^{\rm L}\vec{I_1}$	А	Statorstrom in vektorieller Form bezogen auf das Rotorsystem
${}^{\mathrm{K}}\vec{I_{1}}$	А	Allgemeiner Strom in vektorieller Form, zum Beispiel in Motorwicklung
κ_{β}	rad	Winkel des Stroms bezogen auf das Statorsystem
L_2	Н	Rotorinduktivität
$M_{M\alpha}$	N m	Beschleunigungsmoment der Mechanik
$M_{\rm Mi}$	m Nm	Inneres Drehmoment des Motors
$M_{\rm r}$	N m	Reibmoment aus der Mechanik
R_2	Ω	Rotorwiderstand
$U_{\rm p}$	V	Polradspannung
L_1	Н	Statorinduktivität
R_1	Ω	Statorwiderstand
$T_{\rm D}$	sec	elektrische Ankerzeitkonstante über das Längsteil des Rotors
$T_{\rm Q}$	sec	elektrische Ankerzeitkonstante über das Querteil des Rotors
G	-	Effektivwert der allg. komplexen Zeitfunktion

Parameter der Signalflusspläne

Symbol	Einheit	Bezeichnung
φ	rad	Drehwinkel
φ_{A}	rad	Drehwinkel der Antriebsseite

Symbol	$\mathbf{Einheit}$	Bezeichnung
φ_{M}	rad	Drehwinkel der Motorseite
$\varphi_{ m r}$	rad	Sollwert des Drehwinkels
$\dot{arphi}_{ m r}$	$\mathrm{rad}/\mathrm{sec}$	Sollwert der Winkelgeschwindigkeit
$\ddot{\varphi}$	$\rm rad/sec^2$	Winkelbeschleunigung
$\dot{\varphi}_{\mathrm{A}}$	$\mathrm{rad}/\mathrm{sec}$	Winkelgeschwindigkeit der Antriebsseite
$\dot{\varphi}_{\mathrm{M}}$	$\mathrm{rad}/\mathrm{sec}$	Winkelgeschwindigkeit der Motorseite
$T_{\rm PWM}$	sec	Abtastzeit des Stromrichters
$f_{\rm R}(\cdot)$	$\operatorname{Nm}\operatorname{sec}/\operatorname{rad}$	Funktion zur Beschreibung des Reibverhaltens
$T_{ m t}$	sec	Totzeit des Stromrichters
$T_{\rm e}$	sec	Ersatzzeitkonstante des Stromregelkreises
$T_{\rm u}$	sec	Ersatzzeitkonstante des Stromrichters
$K_{\rm P}$	A/U	Proportionalverstärkung des PID Reglers
$T_{\rm N}$	s	Nachstellzeit des PID Reglers
$T_{\rm V}$	s	Vorhalt des PID Reglers
$T_{\rm N,d}$	sec	Nachstellzeit des PI-Drehzahlreglers
$K_{\rm P,d}$	${ m A/Umin}$	Proportionalverstärkung des Drehzahlreglers
$K_{\rm P,d}^{'}$	-	Proportionalverstärkung des Drehzahlreglers normiert
$K_{\rm P,i}$	$\rm V A^{-1}$	Proportionalverstärkung des Stromreglers
$T_{\rm N,i}$	sec	Nachstellzeit des PI-Stromreglers

$\ddot{U} bertragungs funktion en$

Symbol	Einheit	Bezeichnung
$G_{\rm BP}(s)$	-	Übertragungsfunktion eines Bandpasses
$G_{\mathrm{R},\varphi}(s)$	-	Übertragungsfunktion des Lagereglers
$G_{\mathrm{R},\omega}(s)$	-	Übertragungsfunktion des Drehzahlreglers
$G_{\mathbf{o},\varphi}$	-	Übertragungsfunktion des offenen Lageregelkreises
$G_{\mathrm{w},\varphi}(s)$	-	Führungsübertragungsfunktion des Lageregelkreises
$G_{\rm N}(s)$	-	Übertragungsfunktion von Notch Filtern
$G_{\rm s}(s)$	-	Übertragungsfunktion der Regelstrecke
$G_{\rm AA}(s)$	-	Übertragungsfunktion der Lastseite mit Wirkung auf die
		Lastseite
$G_{\rm AM}(s)$	-	Ubertragungsfunktion der Lastseite mit Wirkung auf die
		Motorseite
$G_{\rm el}(s)$	-	Übertragungsfunktion des elektrischen Teils der Regelstrecke
$G_{\rm MA}(s)$	-	Übertragungsfunktion des mechanischen Teils der Regelstre-
		cke mit Wirkung auf die Lastseite
$G_{\rm MA,e}(s)$	-	Übertragungsfunktion des elastischen Anteils der mechani-
		schen Übertragungsfunktion mit Wirkung auf die Lastseite

Symbol	Einheit	Bezeichnung
$G_{\rm MM,e}(s)$	-	Übertragungsfunktion des elastischen Anteils der mechanischen Übertragungsfunktion mit Wirkung auf die Motorseite
$G_{\rm M3}(s)$	-	Übertragungsfunktion der Motorseite auf die Antriebsseite
$G_{\mathrm{M,s}}(s)$	-	Übertragungsfunktion des starren Anteils der mechanischen Übertragungsfunktion
$G_{\rm MM}(s)$	-	Übertragungsfunktion des mechanischen Teils der Regelstrecke mit Wirkung auf Motorseite
$G_{\rm R,i}(s)$	-	Übertragungsfunktion des Strom PI-Reglers

Identifikation von ZMS

Symbol	Einheit	Bezeichnung
G	А	Ausgang des Zweipunktreglers
$\hat{M}_{M\alpha}$	m Nm	Identifiziertes Beschleunigungsmoment der Mechanik
ω_{O}	U/\min	Oberer Umschaltpunkt des Zweipunktreglers
T_{Δ}	sec	Periodendauer des Dreieckssignals
ω_{U}	U/\min	Unterer Umschaltpunkt des Zweipunktreglers
\bar{X}	-	Erwartungswert einer Stichprobe
$g_{\rm ZP}$	-	Güte der Identifikation aus dem Relay-Feedback-Experiment

ANF-Algorithmus

Symbol	Einheit	Bezeichnung
$_{k}^{\mathrm{P}}a$	-	Bandpassfilterparameter im Nennerpolynom
$_{k}^{P}b$	-	Bandpassfilterparameter im Zählerpolynom
$_{k}^{\mathrm{S}}a$	-	Bandsperfilterparameter im Nennerpolynom
$_{k}^{\mathrm{S}}b$	-	Bandsperrfilterparameter im Zählerpolynom
Δf	$_{\rm Hz}$	Aktueller Frequenzstützstellenabstand der aktuellen Iteration
		р
$\Delta f_{\rm MD}$	$_{\rm Hz}$	Mindestabstand zwischen zwei Maxima
$\Delta f_{\rm NB}$	$_{\rm Hz}$	Umgebung um ein Maximum
u[n]	-	Diskrete Eingangssignalfolge
$f_{\rm Ende}$	$_{\rm Hz}$	Endfrequenz
k	-	Index der aktuellen Frequenzstützstelle
N	-	Anzahl zu verarbeitender Messwerte
n	-	Index des aktuellen Messwerts
f_{Iter}	$_{\rm Hz}$	Frequenz in der aktuellen Iteration
L	-	Maximale Anzahl Maxima im Speicher
P[k]	W	Leistung an der Stelle k
$P_{\rm NB}[k]$	W	Mittlere Leistung der Umgebung

Symbol	Einheit	Bezeichnung
$P_{\text{Rel}}[k]$	-	Relative Leistung an der Stelle k bezogen auf eine Umgebung
$P_{\text{Rel}}[k-1]$	-	Relative Leistung an der Stelle k-1 bezogen auf eine Umge- bung. Bei der Maximumsuche ist die Stelle k-1 das Maximum, die Stellen k und k-2 die benachbarten Stützpunkte
$P_{\text{Rel}}[k-2]$	-	Relative Leistung an der Stelle k-2 bezogen auf eine Umgebung
ϵ	-	Schwellwert für die Maximumsdetektion
$f_{\rm Start}$	$_{\rm Hz}$	Startfrequenz
$\Delta \omega_{\rm BP}$	rad/sec	Normierte Breite des Bandpass
x_{P}	-	Stützstelle des Maximums
$P(x_{\rm P})$	-	Leistung des Maximums
$p_{1,l}$	-	1. Polynomparameter für \hat{y}_{l}
$p_{ m n,l}$	-	n. Polynomparameter für \hat{y}_{l}
$p_{1,r}$	-	1. Polynom parameter für $\hat{y}_{\rm r}$
$p_{ m n,r}$	-	n. Polynomparameter für $\hat{y}_{\rm r}$
x_1	-	Stützstelle links vom Maximum
$x_{ m r}$	-	Stützstelle rechts vom Maximum
\hat{y}_1	-	Approximierte Funktion links neben Maximum
$\hat{y}_{ m r}$	-	Approximierte Funktion rechts neben Maximum
$\Delta \omega_{\rm N}$	$\mathrm{rad}/\mathrm{sec}$	Breite des Notch-Filters
$g_{ m N}$	-	Tiefe des Notch-Filters in normierter Darstellung
Ω	-	digitale Kreisfrequenz
ω_0	$\mathrm{rad}/\mathrm{sec}$	analoge Kreisresonanzfrequenz
Ω_{Res}	-	Absolute digitale Kreisresonanzfrequenz
r_{xx}	-	Autokorellationsfolge des Signals x
S_{xx}	-	Z-Transformierte der AKF von r_{xx}
x[n]	-	Zeitdiskrete Signalfolge der Länge N
$X_N[k]$	-	Zeitdiskrete DFT-Transformierte der Signalfolge $x,$ Länge N
$H_k(z)$	-	Übertragungsfunktion
W_N	-	"Twiddle-Faktor" einer DFT zur Länge N

Stabilitätsanlayse

Symbol	Einheit	Bezeichnung
$V_{\text{Gr-}}$	-	Amplitudenreserve bei negativem Phasengradienten
ω_{P}	$\mathrm{rad}/\mathrm{sec}$	Kreisfrequenz der Amplitudenreserve bei negativem Phasen- gradienten
$V_{\rm Gr+}$	-	Amplitudenreserve bei positivem Phasengradienten
$\omega_{\rm P+}$	$\mathrm{rad}/\mathrm{sec}$	Kreisfrequenz der Amplitudenreserve bei positivem Phasengradienten

Symbol	Einheit	Bezeichnung
γ	-	Verhältnis der Nachstellzeit eines PID-Reglers im Verhältnis
κ	-	zum Startwert Verhältnis der Reglerverstärkung eines PID-Reglers im Ver- hältnis zum Startwert
ν	-	Verhältnis von Nachstell- und Vorhaltzeit des PID-Reglers
PR	-	Phasenreserve
ω_{PM}	rad/sec	Kreisfrequenz, bei der die Phasenreserve gemessen wird.
ξ	-	Verhältnis der Notch-Filtermittenfrequenz im Verhältnis zur zu dämpfenden Resonanzfrequenz

Sonstiges Symbol E

Symbol	Einheit	Bezeichnung
$f_{\rm s}$	$_{\rm Hz}$	Abtastfrequenz (allgemein)
$T_{\rm s}$	sec	Abtastzeit (allgemein)
$T_{\rm Set}$	sec	Anregelzeit des Reglers
B	rad/sec	Bandbreite eines schwingfähigen Systems (allgemein)
Q	-	Güte eines schwingfähigen Systems (allgemein)
ω	rad/sec	Kreisfrequenz (allgemein)
s_{p}	-	Polstelle einer charakteristischen Gleichung (allgemein)
e_{φ}	U	Lageabweichung
$e_{\varphi}^{\mathrm{const}}$	U	Lageabweichung bei konstanter Verfahrbewegung
$e_{\varphi}^{\mathrm{dyn}}$	U	Lageabweichung bei dynamischer Verfahrbewegung
e_{ω}	U/\min	Drehzahlabweichung
T_1	sec	Allgemein: Größte Zeitkonstante
T_{σ}	sec	Allgemein: Summe aller kleineren Zeitkonstanten
$V_{\rm S}$	-	Allgemein: Gesamte Streckenverstärkung

KURZFASSUNG

Diese Arbeit leistet einen Beitrag zum industrietauglichen Einsatz von Identifikationsalgorithmen von Regelstrecken, die am Beispiel einer Produktionsmaschine gezeigt werden. Dabei wird das Relay-Feedback-Experiment, welches mit einem Nelder-Mead-Optimierungsalgorithmus gekoppelt ist mit einem neu entwickelten Scanning-Verfahren verglichen. Dies wird an zwei unterschiedlichen Maschinen validiert. Ziel beider Verfahren ist, Resonanzfrequenzen mit dominierendem Streckeneinfluss zu identifizieren, sodass diese mit Notch-Filtern gedämpft werden können.

Das Scanning-Verfahren berechnet das Leistungsdichtespektrum des Drehzahlistwerts, welches für die automatische Identifikation der benötigten Notch-Filterparameter benutzt wird. Im Vergleich zum Relay-Feedback-Experiment wird nicht in das bestehende Regelungssystem eingegriffen, sodass es dadurch zum Beispiel auch bei endlagenbeschränkten sowie bei schwerkraftbehafteten Maschinenachsen einsetzbar ist. Da die Identifikation beim Scanning-Verfahren im geschlossenen Regelkreis durchgeführt wird, wird die Resonanzfrequenz verfälscht bestimmt. Dies wird in der Arbeit sowohl theoretisch als auch unter praktischen Gesichtspunkten betrachtet und bewertet. Die Anzahl der Resonanzfrequenzen ist dabei nicht an eine Modellordnung gekoppelt.

Die Messungen werden an serienmäßig eingesetzten Maschinen, die weltweit im Einsatz sind, direkt auf dem Frequenzumrichter auf einem Signalprozessor unter Echtzeitanforderungen umgesetzt. Das Scanning-Verfahren ist daher derart gestaltet, dass dieses echtzeitfähig mit wenig Ressourcen lauffähig ist. Die Wirksamkeit der automatisch eingemessenen Notch-Filter wird sowohl im Zeit- als auch Frequenzbereich nachgewiesen. Dazu werden Gütefunktionale benutzt, um Metriken zu entwerfen, die diese Wirksamkeit aufzeigen. Durch das Einführen des Gütefunktionals wird die Parametrierung von Notch-Filtern auf ein Optimierungsproblem zurückgeführt.