Fortschritt-Berichte VDI

VDI

Reihe 18

Mechanik/ Bruchmechanik M.Sc. Alexander Grübel, Paderborn

Nr. 349

Effiziente bruchmechanische Herangehensweisen für eine wirtschaftliche Produktentstehung und einen sicheren Bauteilbetrieb

Effiziente bruchmechanische Herangehensweisen für eine wirtschaftliche Produktentstehung und einen sicheren Bauteilbetrieb

zur Erlangung des akademischen Grades DOKTOR DER INGENIEURWISSENSCHAFTEN (Dr.-Ing.) der Fakultät für Maschinenbau der Universität Paderborn

> genehmigte DISSERTATION

> > von

M. Sc. Alexander Grübel aus Holzminden

Tag des Kolloquiums: 6. Dezember 2017Referent:Prof. Dr.-Ing. habil. Hans Albert RichardKorreferent:Prof. Dr.-Ing. Stefan Weihe

Fortschritt-Berichte VDI

Reihe 18

Mechanik/ Bruchmechanik M.Sc. Alexander Grübel, Paderborn

Effiziente bruchmechanische Herangehensweisen für eine wirtschaftliche Produktentstehung und einen sicheren Bauteilbetrieb

vdi verlag

Grübel, Alexander

Effiziente bruchmechanische Herangehensweisen für eine wirtschaftliche Produktentstehung und einen sicheren Bauteilbetrieb

Fortschr.-Ber. VDI Reihe 18 Nr. 349. Düsseldorf: VDI Verlag 2018. 138 Seiten, 90 Bilder, 16 Tabellen. ISBN 978-3-18-334918-0, ISSN 0178-94*57*, € 52,00/VDI-Mitgliederpreis € 46,80.

Für die Dokumentation: Bruchmechanik in der virtuellen Produktentstehung – Ermüdungsrisswachstum – bruchmechanischer Festigkeitsnachweis – ersatzmodellbasierte Spannungsintensitätsfaktorermittlung – Mixed-Mode-Rissbeanspruchung – Nutzung vorhandener Spannungsdaten – effiziente Herangehensweisen – Restlebensdauer

Ermüdungsrisswachstum von Fehlstellen in Folge zyklischer Beanspruchung ist eine häufige Versagensursache von Bauteilen. Die im fehlstellenfreien Bauteil wirkenden Spannungen sind im Kontext einer modernen Produktentstehung unabhängig von einer bruchmechanischen Untersuchung verfügbar. Deren synergetische Nutzung zur Bestimmung der Rissbeanspruchung mit Hilfe numerischer Methoden ist Hauptthema dieser Arbeit. In der vorliegenden Dissertation werden Herangehensweisen erarbeitet, die vorhandene mehrachsige Spannungsdaten fehlstellenfreier Bauteile zur Bestimmung der Rissbeanspruchung nutzen. In der Praxis gestaltet sich dadurch die bruchmechanische Bauteilbewertung deutlich effizienter. Die Herangehensweisen basieren größtenteils auf kubischen Ersatzmodellen, wodurch der Modellierungs- und Berechnungsaufwand reduziert wird.

Bibliographische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet unter <u>http://dnb.ddb.de</u> abrufbar.

Bibliographic information published by the Deutsche Bibliothek

(German National Library) The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie (German National Bibliography); detailed bibliographic data is available via Internet at http://dnb.ddb.de.

Dissertation Universität Paderborn

© VDI Verlag GmbH · Düsseldorf 2018

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe (Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung, vorbehalten.

Als Manuskript gedruckt, Printed in Germany. ISSN 0178-9457 ISBN 978-3-18-334918-0

VORWORT

Die vorliegende Dissertation entstand im Rahmen meiner Tätigkeit als wissenschaftlicher Mitarbeiter der Fachgruppe Angewandte Mechanik der Universität Paderborn.

Mein besonderer Dank gilt meinem Doktorvater und langjährigem Leiter der Fachgruppe Angewandte Mechanik Herrn Prof. Dr.-Ing. Hans Albert Richard für die Diskussionsbereitschaft, die vielen wertvollen Ratschläge und Anregungen sowie das entgegengebrachte Vertrauen. Die konsequente Förderung hat wesentlich zum Gelingen dieser Arbeit beigetragen.

Dem Direktor der Materialprüfungsanstalt der Universität Stuttgart, Herrn Prof. Dr.-Ing. Stefan Weihe, danke ich für das gezeigte Interesse an meiner Arbeit und die Übernahme des Korreferats meiner Dissertation. Ebenso gilt mein Dank Herrn Prof. Dr.-Ing. Volker Schöppner (Kunststofftechnik Paderborn, Universität Paderborn) sowie Herrn Prof. Dr.-Ing. Gerson Meschut (Laboratorium für Werkstoff- und Fügetechnik, Universität Paderborn) für die Mitarbeit in der Promotionskommission.

Für die fachliche Unterstützung und die sehr hilfreichen Diskussionen bedanke ich mich außerdem bei Herrn Prof. Dr.-Ing. Gunter Kullmer. Ein großer Dank für die kollegiale Arbeitsatmosphäre und die gute Zusammenarbeit gilt weiterhin den derzeitigen und ehemaligen Arbeitskolleginnen und Arbeitskollegen der Fachgruppe Angewandte Mechanik: Frau Dipl.-Medienwirtin (FH) Michaela Brock, Frau Dipl.-Ing. Katharina Dibblee, Frau M. Sc. Lena Risse, Frau Dr.-Ing. Britta Schramm, Herrn M. Sc. Benjamin Bauer, Herrn M. Sc. Jan-Peter Brüggemann, Herrn Dr.-Ing. Alexander Eberlein, Herrn M. Sc. Tintu David Joy, Herrn M. Sc. Sergius Kremer, Herrn Dr.-Ing. Wadim Reschetnik, Herrn Dr.-Ing. Andre Riemer, Herrn M. Sc. Karsten Schäfer und Herrn Dipl.-Ing. Markus Wirxel. Einschließen möchte ich sowohl die engagierten Studien-, Bachelor- und Masterarbeiter/-innen als auch die studentischen Hilfskräfte.

Abschließend geht ein besonderer Dank an meine Eltern Ulrike und Manfred für ihren uneingeschränkten Rückhalt sowie die Unterstützung auf meinem bisherigen Lebensweg. Gleiches gilt meinem Bruder Carl. Großer Dank gilt außerdem meiner Partnerin Hedda für ihre Zuversicht, viele wertvolle Ratschläge und die notwendige Ablenkung.

Paderborn, im Dezember 2017

Alexander Grübel

Meinen Eltern

INHALTSVERZEICHNIS

Verzeichnis der verwendeten Symbole und AbkürzungenVIII			
Kı	ırzfassu	ıng	XIII
1	Einfü	ihrung	1
2	Fehls	tellen in Bauteilen und Strukturen sowie ihre Bewertung	4
	2.1	Wirkung von Rissen und Fehlstellen auf Bauteile	4
	2.1.1	Rissbildung	4
	2.1.2	Rissfortschritt	5
	2.2	Beispiele für Rissprobleme unter komplexer Belastung in der Praxis	6
	2.2.1	Ermüdungsrisswachstum in Rotorwellen von Windenergieanlagen	7
	2.2.2	Rissprobleme in der Kurbelwelle von Verbrennungsmotoren	8
	2.3	Kraftflussverlauf und Rissbeanspruchungsarten	9
	2.4	Spannungsverteilung in der nahen Rissumgebung	12
	2.4.1	Spannungsverteilung ebener Rissprobleme	
	2.4.2	Spannungsverteilung räumlicher Rissprobleme	14
	2.5	Spannungsintensitätsfaktoren	16
	2.6	K-Konzept bei Mixed-Mode-Beanspruchung	17
	2.6.1	K-Konzept bei Single-Mode-Beanspruchung	17
	2.6.2	K-Konzept bei ebener Mixed-Mode-Beanspruchung	
	2.6.3	K-Konzept bei räumlicher Mixed-Mode-Beanspruchung	19
	2.7	Ermüdungsrisswachstum bei zyklischer Belastung mit konstanter Amplitı	ade21
	2.7.1	Zusammenhang zwischen Bauteilbelastung und zyklischem	
		Spannungsintensitätsfaktor	21
	2.7.2	Rissausbreitung unter zyklischer Beanspruchung	23
	2.7.3	Mathematische Konzepte zur Beschreibung der Kennwerte des	
	2.7	Ermüdungsrisswachstums	
	2.7	2.2 FORMAN/METTLI Cloichung	
	2.7	2.3 Konzent nach KULLMER	25
	2.7.4	Ermüdungsrisswachstum bei Mixed-Mode-Beanspruchung	20
	/./		20
	2.8 I	Vorgehensweise der bruchmechanischen Bauteilbewertung	28 20
	2.8.1	Internationale Regelwerke zur bruchmechanischen Bauteilbewertung	29 29
	2.8	2.1 FKM-Richtlinie Bruchmechanischer Festigkeitsnachweis	

	2.8	.2.2 British Standard 7910	30
	2.8	.2.3 European Fitness-for-Service Network FITNET	30
	2.8	.2.4 ASME Boiler & Pressure Vessel Code	31
	2.8.3	Kennwertermittlung nach ASTM E 647-08	31
		-	
3	Bruc	hmechanische Bauteilbewertung im Kontext der modernen	
	Prod	uktentstehung und -nutzung	33
3	.1	Virtuelle Entstehung technischer Produkte	33
,	•	ج ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰	
3	.2	Bruchmechanische Frägestellungen während Produktentstehung und	25
		Bautenbetrieb	35
3	.3	Anforderungen an die effiziente bruchmechanische Bauteilbewertung	36
4	Verf	ahren zur Bestimmung der bruchmechanischen Beanspruchungsgrößen	38
4	.1	Grundlegende Ansätze für Basislösungen	38
	4.1.1	Analytische Lösungen	38
	4.1.2	Programmbasierte Bibliotheken	39
4	2	Numerische Reansnruchungsanalyse von Rissen	40
	421	Grundlagen der Finite-Elemente-Methode	40
	422	Ansätze der Finite-Elemente-Methode zur Beschreibung der Gegebenheiten	
	1.2.2	an der Rissspitze	42
	4.2.3	Spannungsintensitätsfaktorbestimmung auf Basis der Finite-Elemente Methode	46
	4.2	.3.1 Einfaches und modifiziertes Rissschließungsintegral	46
	4.2	.3.2 J-Integral	47
	4.2	.3.3 <i>M</i> -Integral	49
	4.2	.3.4 Verschiebungskorrelationsmethode	49
	4.2.4	Untersuchungen zur Ergebnisgenauigkeit	51
4	.3	Automatisierte numerische Simulation des Ermüdungsrisswachstums	52
	4.3.1	Automatisierte Rissausbreitungssimulationsprogramme	53
	4.3	.1.1 Programmsystem FRANC/FAM	53
	4.3	.1.2 Programmsystem ADAPCRACK3D	53
	4.3	.1.3 Programmsystem FRANC3D	54
	4.3.2	Untersuchungen zur Ergebnisgenauigkeit	54
4	.4	Bewertung der Verfahren zur Spannungsintensitätsfaktorbestimmung	
	i	in Bauteilen und Strukturen	59
5	Effiz	iente bruchmechanische Herangehensweisen für Produktentstehung	~~
	und	Bauteildetried	62
5	.1	Hauptnormalspannungskonzept	64
	5.1.1	Idee des Hauptnormalspannungskonzepts	64
	5.1.2	Anwendbarkeit	65

	5.2	Mehrachsige halbanalytische Herangehensweise	66
	5.2.	Rissbeanspruchungsrelevante Komponenten des mehrachsigen Spannungsfeldes	67
	5.2.2	2 Idee der mehrachsigen halbanalytischen Herangehensweise	68
	5.2.3	3 Anwendbarkeit	70
	5.3	Konzept der Schnittspannungsfelder	72
	5.3.	I Idee des Konzepts der Schnittspannungsfelder	72
	5.3.2	2 Anwendbarkeit	75
	5.4	Konzept der parametrisierten Einflussfunktionen	76
	5.4.	I Idee des Konzept der parametrisierten Einflussfunktionen	76
	5.4.2	2 Anwendbarkeit	79
	5.5	Bewertung der entwickelten Herangehensweisen	81
	5.6	Umsetzung der mehrachsigen halbanalytischen Herangehensweise in ein	
		Berechnungstool	84
6	Val	idierung der Herangehensweisen und Konzepte an Rissen in	
	dre	idimensionalen Bauteilen	
	6.1	Kraftwerksbauteil: Y-Siebfilter	87
	6.2	Motorenkomponente: Kurbelwelle	94
7	Lös	ungsvorschläge zu provisrelevonten Frogestellungen der bruchm	
'	Bau	iteilbewertung	102
	7.1	Umgang mit nicht-proportionalen Mixed-Mode-Rissheanspruchungen	
	7.1.	Ungleiche positive <i>R</i> -Verhältnisse	
	7.1.2	2 Ungleiche negative <i>R</i> -Verhältnisse	
	7.1.3	3 Statische Mode II-Beanspruchung	
	7.2	Einfluss unscharfer Materialdaten auf die Restlebensdauer	
	7.3	Einfluss anisotroper Materialkennwerte auf die Restlebensdauer bei	
		Mixed-Mode-Rissbeanspruchung	
~	г		
8	Faz		113
Li	teratu	rverzeichnis	115

VERZEICHNIS DER VERWENDETEN SYMBOLE UND ABKÜRZUNGEN

a) Lateinisch

A	Querschnittsfläche
С	Integrationsweg des J-Integrals
$C_{\rm FM}$	Koeffizient der FORMAN/METTU-Gleichung
Ср	Koeffizient der PARIS-Gleichung
F	Kraft
$F_{ m G}$	Gaskraft, Gewichtskraft
Fi	Knotenpunktkraft
Fmax	maximale Kraft
F_{\min}	minimale Kraft
$F_{ m RG}$	radiale Hubzapfenkraft
Fsg	Hubzapfenkraft
Ftg	tangentiale Hubzapfenkraft
$G_{\rm I}, G_{\rm II}, G_{\rm III}$	Energiefreisetzungsrate für Mode I, Mode II und Mode III
J	gesamte freigesetzte Energie bei Rissfortschritt
$J_{\mathrm{I}}, J_{\mathrm{II}}, J_{\mathrm{III}}$	freigesetzte Energie für Mode I, Mode II und Mode III
<u>K</u>	Steifigkeitsmatrix
$K_{\rm I}, K_{\rm II}, K_{\rm III}$	Spannungsintensitätsfaktor für Mode I, Mode II bzw. Mode III
K _{I,a} , K _{II,a}	Spannungsintensitätsamplitude für Mode I und Mode II
$K_{\rm IC}, K_{\rm IIC}, K_{\rm IIIC}$	Risszähigkeit für Mode I, Mode II und Mode III
$K_{\mathrm{I},\mathrm{m}}, K_{\mathrm{II},\mathrm{m}}$	Mittelwert des Spannungsintensitätsfaktors für Mode I und Mode II
K _{I,max} , K _{I,min}	maximaler bzw. minimaler Spannungsintensitätsfaktor für Mode I
K _{I,zul}	zulässiger Spannungsintensitätsfaktor
K _C	kritischer Spannungsintensitätsfaktor
$K_{\rm V}$	Vergleichsspannungsintensitätsfaktor
$\Delta K_{\rm I}, \Delta K_{\rm II}, \Delta K_{\rm III}$	zyklischer Spannungsintensitätsfaktor für Mode I, Mode II und Mode III
$\Delta K_{\mathrm{I},0}, \Delta K_{\mathrm{II},0}$	zyklischer Spannungsintensitätsfaktor für Mode I und Mode II unter Annahme von $R = 0$
$\Delta K_{\rm IC}$	kritischer zyklischer Spannungsintensitätsfaktor für Mode I

$\Delta K_{\rm I,zul}$	zulässiger zyklischer Spannungsintensitätsfaktor
$\Delta K_{\rm I,th}$	Schwellenwert für Mode I
$\Delta K_{\rm V}$	zyklischer Vergleichsspannungsintensitätsfaktor
$\Delta K_{\mathrm{V},0}$	zyklischer Vergleichsspannungsintensitätsfaktor unter Annahme von $R = 0$
L	Elementgröße an der Rissspitze
L^*	Verhältnis der Elementgröße an der Rissspitze zur Risslänge
Ls	Submodellelementgröße
M	Moment
$M_{ m Ab}$	Abtriebsmoment
MAn	Antriebsmoment
N	Lastwechselzahl
$N_{0 \rightarrow 1}$	benötigte Lastwechselzahl für definierte Rissverlängerung
$N_{\rm G}$	Kolbenseitenwandkraft
R	Verhältnis von minimaler zu maximaler Beanspruchungsgröße
$S_{\rm E}$	Sicherheit gegen stabile Rissausbreitung
$S_{\rm R}$	Sicherheit gegen instabile Rissausbreitung
\overline{U}	elastische Energiedichte
<u>U</u>	Verschiebungsvektor
$W_{\rm k}$	Arbeit für Rissschließen
$Y_{\rm I}, Y_{\rm II}, Y_{\rm III}$	Geometriefaktoren für Mode I, Mode II und Mode III
Y _{I,z}	Geometriefaktor für Mode I in Folge einer Normalspannung σ_z
$Y_{\rm II,zy}, Y_{\rm III,zy}$	Geometriefaktor für Mode II und Mode III in Folge einer Schubspannung τ_{zy}
Y _{II,zx} , Y _{III,zx}	Geometriefaktor für Mode II und Mode III in Folge einer Schubspannung τ_{zx}
a,b	Risslänge
a_0	Initialrisslänge
a _{0,crit}	wachstumsfähige Anrisslänge
a _C	kritische Risslänge
a _h	Risslänge bei Rissstillstand

Δa	Risslängenzuwachs
b	Halbachse eines elliptischen Risses
с	Spezifische Wärmekapazität
d	Durchmesser
da	Risslängenänderung
da/dN	Rissgeschwindigkeit bzw. Rissfortschrittsrate
dN	Lastwechselzahländerung
ds	Wegkoordinate des J-Integrals
f	Verhältnis von absoluter Ergebnisabweichung zum Thresholdwert
h _{I,z}	Einflussfaktor für Mode I in Folge einer Normalspannung σ_z
$h_{\rm II,zx}, h_{\rm III,zx}$	Einflussfaktor für Mode II und Mode III in Folge einer Schubspannung τ_{zx}
$h_{\rm II,zy}, h_{\rm III,zy}$	Einflussfaktor für Mode II und Mode III in Folge einer Schubspannung τ_{zy}
jz	Verdrehung
<i>M</i> P	Exponent im PARIS-Gesetz
n, p, q	Exponenten der FORMAN/METTU-Gleichung
<i>p</i> ü	normierter Überdruck
q	Verhältnis von Submodellelementgröße zur globalen Elementgröße
<i>r</i> , φ	Polarkoordinaten
r*	Abstand zur Rissspitze
t	Zeit, Probendicke
Δt	effektive Elementdicke
\vec{u}	Verschiebungsvektor
$u_{\rm x}, u_{\rm y}, u_{\rm z}$	Verschiebungen
$\Delta u_{\rm x}, \Delta u_{\rm y}, \Delta u_{\rm z}$	Rissuferverschiebung
W	Probenbreite
<i>x</i> , <i>y</i> , <i>z</i>	kartesische Koordinaten

b) Griechisch

$arPhi_{ m I}, arPhi_{ m II}$	Phasenwinkel für Mode I und Mode II
α	Wärmeausdehnungskoeffizient
γ	Rissöffnungsfunktion der FORMAN/METTU-Gleichung
Eij	Dehnungstensor
κ	Exponent des Exponentionalansatzes nach KULLMER
λ	Koeffizient des Exponentionalansatzes nach KULLMER, Wärmeleitfähigkeit
v	Querkontraktionszahl
ρ	Dichte, Kerbradius
σ	Spannung
$\vec{\sigma}$	Spannungsvektor
$\sigma_1, \sigma_2, \sigma_3$	Hauptspannung
$\sigma_{\rm a}$	Spannungsamplitude bzw. Spannungsausschlag
$\sigma_{\mathrm{B,x}}, \sigma_{\mathrm{B,y}}, \sigma_{\mathrm{B,z}}$	Normalspannungen des Basistensors
σ_{ij}	Komponenten des Spannungstensors
$\sigma_{ m m}$	Mittelspannung
$\sigma_{ m max}$	maximale Spannung
σ_{\min}	minimale Spannung
<i>σ</i> s, <i>τ</i> s	Schnittspannungen
$\sigma_{x}, \sigma_{y}, \sigma_{z}$	Normalspannungen in kartesischen Koordinaten
$\sigma_{\phi}, \sigma_{r}, \sigma_{z}$	Normalspannungen in Zylinderkoordinaten
$\Delta\sigma$	Schwingbreite der Normalspannung bzw. Spannungsschwingbreite
τ	Schubspannung
$\tau_{B,xy}, \ \tau_{B,yz}, \ \tau_{B,zx}$	Schubspannungen des Basistensors
$\tau_{xy}, \ \tau_{yz}, \ \tau_{zx}$	Schubspannungen in kartesischen Koordinaten
$\tau_{r\phi}, \ \tau_{rz}, \ \tau_{\phi z}$	Schubspannung in Zylinderkoordinaten
τ _z	nichtebene Schubspannung
φ	Winkel, Kurbelwinkel
$arphi_0$	Rissabknickwinkel

Ψ	Rissbeanspruchung des Exponentionalansatzes nach KULLMER
ψ_0	Rissverdrehwinkel
$\psi_{ m th}$	Schwellenwert des Exponentionalansatzes nach KULLMER
$\omega_{\mathrm{I}}, \omega_{\mathrm{II}}$	Kreisfrequenz für Mode I-, Mode II-Beanspruchungs-Zeit- Funktion.

c) Abkürzungen

ASTM	American Society for Testing and Material
CAD	Computer Aided Design
CAE	Computer Aided Engineering
СТ	Compact-Tension
CTSR	Compact-Tension-Shear-Rotation
DIN	Deutsches Institut für Normung
ESZ	ebener Spannungszustand
EVZ	ebener Verzerrungszustand
FEM	Finite-Elemente-Methode
FITNET	Fitness-for-Service-Network
FKM	Forschungskuratorium Maschinenbau
FRANC	Fracture Analysis Code
GW	Gigawatt
LEBM	Linear elastische Bruchmechanik
Lw	Lastwechsel
MVCCI	Modified Virtual Crack Closure Integral
SINTAP	Structural Integrity Assessment Procedures for European Industry

Alle weiteren verwendeten oder hiervon abweichenden Symbole und Bezeichnungen sind im Text erläutert.

KURZFASSUNG

Eine der Ursachen für das Versagen technischer Bauteile ist das Ermüdungsrisswachstum von Fehlstellen in Folge zyklischer Beanspruchung. Im Kontext einer modernen Produktentstehung ist die numerische Simulation von Bauteilen weit verbreitet. Wichtige Daten, wie die im fehlstellenfreien Bauteil wirkenden Spannungen, sind unabhängig von einer bruchmechanischen Untersuchung auftretender Fehlstellen verfügbar. Deren synergetische Nutzung zur Bestimmung der Rissbeanspruchung durch herkömmliche Anwendung von Rissausbreitungssimulationsprogrammen ist jedoch nicht ohne Weiteres möglich. Neumodellierungen des Ausgangsproblems sind nötig. Vor diesem Hintergrund werden in der vorliegenden Dissertation Herangehensweisen erarbeitet, die vorhandene mehrachsige Spannungsdaten fehlstellenfreier Bauteile zur Bestimmung der Rissbeanspruchung nutzen. In der Praxis gestaltet sich dadurch die bruchmechanische Bauteilbewertung deutlich effizienter. Die Herangehensweisen basieren größtenteils auf kubischen Ersatzmodellen, wodurch der Modellierungs- und Berechnungsaufwand reduziert wird. Der Fokus liegt dabei auf der Untersuchung der Wachstumsfähigkeit von Rissen. Die anhand von Fehlstellen eines im Bereich thermischer Kraftwerke verwendeten Y-Siebfilters sowie einer Kurbelwelle im Verbrennungsmotor durchgeführte Validierung zeigt die Ergebnisgenauigkeit und Effizienz der Herangehensweisen. Außerdem wird deutlich, dass die Wahl der verwendeten Herangehensweise von der Phase im Produktlebenszyklus abhängt.

ABSTRACT

One of the major reasons for failure of technical components is fatigue crack growth of imperfections subjected to cyclic loading. In the context of the modern product development numerical simulations of technical components are widespread. Important information like the effective stress fields obtained from simulation results of defect-free components is available independently of the fracture mechanical assessment of imperfections. The synergetic use of this stress data with conventional crack growth simulation software is complicated so far. Comprehensive modeling is necessary to obtain stress intensity factors for the original problem. Against this background in this paper approaches are presented to determine crack loading using available multiaxial stress data obtained from existing simulation results of uncracked technical components synergistically. They promise an efficient fracture mechanical assessment procedure for industrial applications. The approaches are mostly based on cubical shaped substitute models whereby modelling and computing time are significantly reduced. They are especially suitable for evaluating the growth ability of imperfections. The validation of accuracy and efficiency of the approaches is done successfully by investigating imperfections of a Y-shaped strainer used in thermal power plants as well as in a crankshaft of a combustion engine. Here it is shown that the choice of the proper approach depends on the phase in the product life cycle.