Fortschritt-Berichte VDI

VDI

Reihe 18

Mechanik/ Bruchmechanik

Dipl.-Ing. Katharina Ursula Dibblee, Paderborn

Nr. 350

3D-Risswachstum in homogenen, isotropen sowie funktional gradierten Strukturen

https://doi.org/10.51202/97.3186350183-I Generiert durch IP '18.222.49.177', am 03.05.2024, 04:59:36 tellen und Weitergeben von Kopien dieses PDFs ist nicht zuläss

https://doi.org/10.51202/9783186350183-I Generiert durch IP '18.222.49.177', am 03.05.2024, 04:59:36. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

3D-Risswachstum in homogenen, isotropen sowie funktional gradierten Strukturen

zur Erlangung des akademischen Grades eines DOKTORS DER INGENIEURWISSENSCHAFTEN (Dr.-Ing.) der Fakultät für Maschinenbau der Universität Paderborn

> genehmigte DISSERTATION

> > von

Dipl.-Ing. Katharina Ursula Dibblee

aus Paderborn

https://doi.org/10.51202/9783186350183-I Generiert durch IP '18.222.49.177', am 03.05.2024, 04:59:36. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

Fortschritt-Berichte VDI

Reihe 18

Mechanik/ Bruchmechanik Dipl.-Ing. Katharina Ursula Dibblee, Paderborn

Nr. 350

3D-Risswachstum in homogenen, isotropen sowie funktional gradierten Strukturen

vdi verlag

https://doi.org/10.51202/9783186350183-I Generiert durch IP '18.222.49.177', am 03.05.2024, 04:59:36. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig.

Dibblee, Katharina Ursula 3D-Risswachstum in homogenen, isotropen sowie funktional gradierten Strukturen

Fortschr.-Ber. VDI Reihe 18 Nr. 350. Düsseldorf: VDI Verlag 2018. 180 Seiten, 93 Bilder, 1 Tabelle. ISBN 978-3-18-335018-6, ISSN 0178-9457, € 67,00/VDI-Mitgliederpreis € 60,30.

Für die Dokumentation: Bruchmechanik – bruchmechanische Gradierung – bruchmechanisches 3D Konzept für gradierte Materialien – dreidimensionales Risswachstum – Ermüdungsrissausbreitung – Gradierungswinkel – numerische Risswachstumssimulationen – funktional gradierte Strukturen – Restlebensdauer – Rissausbreitungsrichtung

Durch den Einsatz von funktional gradierten Materialien ergeben sich neue Möglichkeiten der Strukturoptimierungen im Hinblick auf Leichtbaupotenziale. Gleichzeitig werden neue Herausforderungen an Ingenieure herangetragen, welche sich auf das Rissausbreitungsverhalten in solchen gradierten Strukturen beziehen. Diese Arbeit leistet daher einen Beitrag zur realitätsnahen Rissausbreitungsvorhersage und der damit einhergehenden Restlebensdauerbestimmung von dreidimensionalen Strukturen unter Verwendung von bruchmechanisch gradierten Materialien. Mit dem hier aufgezeigten neuen bruchmechanischen 3D Konzept ist es möglich, den Einfluss einer funktionalen Materialgradierung zu berücksichti-gen. Durch die numerische Umsetzung dieses Konzeptes mit dem Simulationsprogramm ADAPCRACK3D^{VERSION_KDIS} werden die Auswirkungen einer Materialgradierung verdeutlicht. Anwendungsbeispiele veranschaulichen den Einfluss einer bruchmechanischen Gradierung im Hinblick auf die Risspfade sowie die Änderungen der Restlebensdauer von Strukturen.

Bibliographische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet unter <u>www.dnb.de</u> abrufbar.

Bibliographic information published by the Deutsche Bibliothek

(German National Library) The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie (German National Bibliography); detailed bibliographic data is available via Internet at www.dnb.de.

Dissertation Universität Paderborn

© VDI Verlag GmbH · Düsseldorf 2018

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe (Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung, vorbehalten.

Als Manuskript gedruckt, Printed in Germany. ISSN 0178-9457 ISBN 978-3-18-335018-6

> https://doi.org/10.51202/9783186350183-I Generiert durch IP '18.222.49.177', am 03.05.2024, 04:59:36. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig.

Kraft kommt nicht aus körperlichen Fähigkeiten. Sie entspringt einem unbeugsamen Willen.

(Mahatma Gandhi)

https://doi.org/10.51202/9783186350183-I Generiert durch IP '18.222.49.177', am 03.05.2024, 04:59:36. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

INHALTSVERZEICHNIS

V	erzeic	hnis der verwendete Symbole und Abkürzungen	VIII
1	Eiı	leitung und Zielsetzung	1
2	Gr	undlegende Charakterisierung des Risswachstums	4
	2.1	Charakteristische Spannungsverteilungen in der Rissumgebung	5
	2.2	Rissverhalten unter statischer Belastung	7
	2.3	Ermittlung der Spannungsintensitätsfaktoren	9
	2.4	Instabiles Risswachstum	11
	2.4	1 Kriterium der Energiefreisetzung	12
	2.4	2 J-Kriterium	12
	2.4	3 K-Konzept	13
	2.5	Instabiles Risswachstum bei ebener Mixed-Mode-Beanspruchung	13
	2.5	1 Maximal-Tangentialspannungs-Kriterium	14
	2.5	2 Bruchkriterium nach RICHARD	14
	2.6	Rissverhalten unter zyklischer Beanspruchung	15
	2.7	Stabiles Risswachstum bei ebener Mixed-Mode-Beanspruchung	
	2.7	1 Maximal-Tangentialspannungs-Kriterium für stabiles Risswachstum	
	2.7	2 Bruchkriterium nach RICHARD für stabiles Risswachstum	19
3	Не	rausforderungen des 3D-Risswachstums	20
	3.1	Auswirkung von Belastungen/Beanspruchungen	21
	3.2	Geometrien	22
	3.3	3D-Mixed-Mode-Komplexität	23
	3.4	Bruchkriterien bei 3-dimensionaler Rissausbreitung	24
	3.4	1 Kriterium nach POOK	25
	3.4	2 σ'_1 -Kriterium nach SCHÖLLMANN et al.	25
	3.4	3 Verallgemeinertes Kriterium nach RICHARD et al	27
	3.5	Stabiles Risswachstum bei räumlicher Mixed-Mode-Beanspruchung	28
	3.5	1 σ'_1 - Kriterium für stabiles Risswachstum	29
	3.5	2 Verallgemeinertes Kriterium für stabiles Risswachstum	29
	3.6	Herausforderungen bei der Simulation von 3D-Risswachstum	30
4	D:	ana diatan in ana diantan Matanialian	21
4	KIS	swachstum m grauferten friaterianen	

	4.1	Über den Leichtbau zu gradierten Materialien	
	4.1.1	Differenzialbauweise	33
	4.1.2	Verbundbauweise	35
	4.2	Funktional gradierte Materialien	
	4.2.1	Elastische Gradierung	38
	4.2.2	Bruchmechanische Gradierung	39
	4.2.3	Verwendungsmöglichkeiten gradierter Materialien und Strukturen	
	4.3	Bruchmechanische Gradierung unter 2-dimensionalem Gesichtspunkt	43
	4.3.1	Konzeptansätze für eine Rissausbreitung in gradierten Strukturen	44
	4.3.2	TSSR-Konzept	45
	4.4	Bruchmechanische Gradierung unter 3-dimensionalem Gesichtspunkt	48
5	Nun	nerische Simulation des 3D-Risswachstums	57
	5.1	Risswachstumsprogramme für homogene Strukturen	57
	5.1.1	FRANC3D/NG	58
	5.1.2	PROCRACK	59
	5.1.3	AdapCrack3d	59
	5.2	Simulationssoftware für funktional gradierte Strukturen	60
	5.2.1	FRANC/FAM	60
	5.2.2	MCRACK2D	60
	5.3	Entwicklung von ADAPCRACK3D ^{Version_KD15}	61
	5.3.1	Online-Benutzeroberfläche als Eingabewerkzeug	61
	5.3.2	ADD-ON Funktion zur Programmstabilität	63
	5.3.3	Rissausbreitung bei teilweise nicht wachstumsfähiger Rissfront	68
	5.3.4	Ausbau der bruchmechanischen Konzepte im Risssimulationsprogramm ADAPCRACK 3D ^{Version_KD15}	71
	5.4	Berechnungsfunktionen für Simulationen in bruchmechanisch	
		gradierten Strukturen	
	5.4.1	Funktion zur Berechnung der Rissausbreitung in einer scharfen	
		bruchmechanischen Gradierung	
	5.4.2	Funktion zur Berechnung der Rissausbreitung in einem bruchmechanisch	
		gradierten Übergangsbereich	81
	5.5	Verifikation von ADAPCRACK3D ^{VERSION_KD15}	85
	5.5.1	Rissausbreitung in homogenen Strukturen	85
	5.5.2	Rissausbreitung in gradierten Strukturen	
6	Pra	xisbezogene Anwendungen von Risswachstumssimulationen	99
	6.1	Einsatz von Risswachstumssimulationen zur Unterstützung von	
		Evaluierungen anhand experimenteller Untersuchungen	103

6.1.1	Numerische Ermittlung von Einflüssen auf die Ermüdungsrissausbreitung	
	in einer Axialrissrohrprobe	104
6.1.2	Bestimmung einer Masterkurve für Axialrissrohrproben	
6.2 E	influss einer Materialgradierung auf das Risswachstum in einem Zahnrad	110
7 Resün	1ee	114
Anhang		
A1		116
A2		118
A3		
A4		128
A5		132
A6		134
A7		147
Literatury	erzeichnis	

VERZEICHNIS DER VERWENDETE SYMBOLE UND ABKÜRZUNGEN

a) Lateinische Symbole

A	<i>m</i> x <i>n</i> -Matrix
А, В	Mixed-Mode-Verhältnisse
A, B, C, D	Parameter des Bruchkriteriums nach RICHARD
$C_{\rm E}$	Parameter des ERDOGAN/RATWANI - Gesetzes
$C_{\rm FM}$	Parameter der FORMAN/METTU - Gleichung
Ср	Parameter der PARIS/ERDOGAN - Gleichung
DK1	Relevanter Spannungsintensitätsfaktor mit $\varphi = \varphi_M$ in Abhängigkeit von $\Delta K_{I,th}(M1)$ nach dem neuen 3D-Konzept an einem Rissfront- knotenpunkt
DK2	Relevanter Spannungsintensitätsfaktor mit $\varphi = \varphi_0$ in Abhängigkeit von $\Delta K_{I,th}(M2)$ nach dem neuen 3D-Konzept an einem Rissfront- knotenpunkt
DK3	Relevanter Spannungsintensitätsfaktor mit $\varphi = \varphi_M$ in Abhängigkeit von $\Delta K_{I,C}(M1)$ nach dem neuen 3D-Konzept an einem Rissfront-knotenpunkt
DK4	Relevanter Spannungsintensitätsfaktor mit $\varphi = \varphi_0$ in Abhängigkeit von $\Delta K_{I,C}$ (M2) nach dem neuen 3D-Konzept an einem Rissfront- knotenpunkt
$G_{\rm I}, G_{\rm II}$	Energiefreisetzungsraten für Mode I und Mode II
GIC	Bruchmechanischer Materialgrenzwert/ kritische Energiefreisetzungsrate
Н	Householder-Matrix
Ι	Einheitsmatrix
J	Wert des J-Integral
$J_{ m IC}$	kritischer Wert des J-Integrals
Kges	Gesamter Spannungsintensitätsfaktor
$K_{\rm I}(t)$	Zeitlich veränderlicher Spannungsintensitätsfaktor für Mode I

<i>K</i> I,F, <i>K</i> I,M	Spannungsintensitätsfaktor für Mode I in Abhängigkeit einer Kraft F bzw. eines Momentes M
KI,ges	Gesamter Spannungsintensitätsfaktor für Mode I
KI,max, K I,min	Maximaler und minimaler Spannungsintensitätsfaktor
K _{II,ges}	Gesamter Spannungsintensitätsfaktor für Mode II
KIII,ges	Gesamter Spannungsintensitätsfaktor für Mode III
$K_{\mathrm{I}}, K_{\mathrm{II}}, K_{\mathrm{III}}$	Spannungsintensitätsfaktoren für Mode I, Mode II und Mode III
$K_{\rm IC}, K_{\rm IIC}, K_{\rm IIIC}$	Risszähigkeiten für Mode I, Mode II und Mode III
Kv	Vergleichsspannungsintensitätsfaktor
$K_{\rm V,I,II}, K_{\rm V,I,II,III}$	Vergleichsspannungsintensitätsfaktoren nach POOK
ΔK	Zyklischer Spannungsintensitätsfaktor
$\Delta K_{\mathrm{I}}, \Delta K_{\mathrm{II}}, \Delta K_{\mathrm{III}}$	Zyklische Spannungsintensitätsfaktoren für Mode I, Mode II und Mode III
$\Delta K_{\rm I}^{\rm C}(\varphi=\varphi_0)$	Zyklischer Spannungsintensitätsfaktor mit $\varphi = \varphi_0$ und Berührpunkt bei $\varphi = \varphi_0$ mit zyklischer Bruchgrenzkurve des TSSR-Konzeptes
$\Delta K_{\rm I}^{\rm C}(\varphi = \varphi_{\rm M})$	Zyklischer Spannungsintensitätsfaktor mit $\varphi = \varphi_M$ und Berührpunkt bei $\varphi = \varphi_M$ mit zyklischer Bruchgrenzkurve des TSSR-Konzeptes
$\Delta K_{\rm I}^{\rm C,3D}(\varphi=\varphi_0)$	Zyklischer Spannungsintensitätsfaktor mit $\varphi = \varphi_0$ und Berührpunkt bei $\varphi = \varphi_0$ mit zyklischer Bruchgrenzkurve des neuen 3D-Konzeptes
$\Delta K_{\rm I}^{\rm C,3D} \big(\varphi = \varphi_0(z) \big)$	Zyklischer Spannungsintensitätsfaktor mit $\varphi = \varphi_0$ und Berührpunkt bei $\varphi = \varphi_0$ mit zyklischer Bruchgrenzkurve des neuen 3D-Konzeptes in Abhängigkeit der z-Koordinate
$\Delta K_{\rm I}^{\rm C,3D}(\varphi=\varphi_{\rm M})$	Zyklischer Spannungsintensitätsfaktor mit $\varphi = \varphi_M$ und Berührpunkt bei $\varphi = \varphi_M$ mit zyklischer Bruchgrenzkurve des neuen 3D-Konzeptes
$\Delta K_{\rm I}^{\rm C,3D}(\varphi = \varphi_M(z))$	Zyklischer Spannungsintensitätsfaktor mit $\varphi = \varphi_M$ und Berührpunkt bei $\varphi = \varphi_M$ mit zyklischer Bruchgrenzkurve des neuen 3D-Konzeptes in Abhängigkeit der z-Koordinate
$\Delta K_{\rm I}^{\rm C,TSSR}$	Relevanter zyklischer Spannungsintensitätsfaktor von $\Delta K_1^C(\varphi)$ des TSSR-Konzeptes
$\Delta K_{1}^{\text{th}}(\varphi=\varphi_{0})$	Zyklischer Spannungsintensitätsfaktor mit $\varphi = \varphi_0$ und Berührpunkt bei $\varphi = \varphi_0$ mit Schwellenwertkurve des TSSR-Konzeptes
$\Delta K_{\rm I}^{\rm th}(\varphi = \varphi_{\rm M})$	Zyklischer Spannungsintensitätsfaktor mit $\varphi = \varphi_M$ und Berührpunkt bei $\varphi = \varphi_M$ mit Schwellenwertkurve des TSSR-Konzeptes

$\Delta K_{\rm I}^{\rm th, 3D} \left(\varphi = \varphi_0 \right)$	Zyklischer Spannungsintensitätsfaktor mit $\varphi = \varphi_0$ und Berührpunkt bei $\varphi = \varphi_0$ mit Schwellenwertkurve des neuen 3D-Konzeptes
$\Delta K_{\rm I}^{\rm th,3D} \left(\varphi = \varphi_0(z) \right)$	Zyklischer Spannungsintensitätsfaktor mit $\varphi = \varphi_0$ und Berührpunkt bei $\varphi = \varphi_0$ mit Schwellenwertkurve des neuen 3D-Konzeptes in Abhängigkeit der z-Koordinate
$\Delta K_{\rm I}^{\rm th,3D}(\varphi = \varphi_{\rm M})$	Zyklischer Spannungsintensitätsfaktor mit $\varphi = \varphi_M$ und Berührpunkt bei $\varphi = \varphi_M$ mit Schwellenwertkurve des neuen 3D-Konzeptes
$\Delta K_{\rm I}^{\rm th,3D} (\varphi = \varphi_{\rm M}(z))$	Zyklischer Spannungsintensitätsfaktor mit $\varphi = \varphi_M$ und Berührpunkt bei $\varphi = \varphi_M$ mit Schwellenwertkurve des neuen 3D-Konzeptes in Abhängigkeit der z-Koordinate
$\Delta K_{\mathrm{I}}^{\mathrm{th,TSSR}}$	Relevanter zyklischer Spannungsintensitätsfaktor von $\Delta K_1^{\rm th}(\varphi)$ des TSSR-Konzeptes
$\Delta K_{ m IC}^{ m 3D}$	Relevanter zyklischer Spannungsintensitätsfaktor von $\Delta K_1^{C,3D}(\varphi)$ des neuen 3D-Konzeptes
$\Delta K_{\rm IC}^{\rm 3D}(z)$	Relevanter zyklischer Spannungsintensitätsfaktor von $\Delta K_1^{C,3D}(\varphi(z))$ des neuen 3D-Konzeptes in Abhängigkeit der z-Koordinate
ΔK I,max, ΔK I,min	Zyklischer maximaler und minimaler Spannungsintensitätsfaktor für Mode I
$\Delta K_{ m I,th}$	Schwellenwerte der Ermüdungsrissausbreitung für Mode I
$\Delta K_{\mathrm{I,th},k}$	Lokaler Schwellenwerte für einen Rissfrontknoten
$\Delta K_{ m I,th}(z)$	Schwellenwerte der Ermüdungsrissausbreitung für Mode I in Abhängigkeit der z-Koordinate
$\Delta K_{\mathrm{I,th}}(\varphi)$	Schwellenwertfunktion in Abhängigkeit von φ
ΔK I,th($\varphi(z)$)	Schwellenwertfunktion in Abhängigkeit von φ und z-Koordinate
$\Delta K_{\mathrm{I,th}}(\varphi_0)$	Schwellenwertfunktion in Richtung von φ_0
$\Delta K_{\mathrm{I,th}}(\varphi_0(z))$	Schwellenwertfunktion in Richtung von \u03c60 und z-Richtung
$\Delta K_{\rm I,th}(\varphi_{\rm M})$	Schwellenwertfunktion in Richtung von φ_M
$\Delta K_{\mathrm{I,th}}(\varphi_{\mathrm{M}}(z))$	Schwellenwertfunktion in Richtung von φ_M und z-Richtung
$\Delta K_{ m I,th}^{ m 3D}$	Relevanter zyklischer Spannungsintensitätsfaktor von $\Delta K_1^{\text{th},3D}(\varphi)$ des neuen 3D-Konzeptes
$\Delta K_{ m I,th}^{ m 3D}(z)$	Relevanter zyklischer Spannungsintensitätsfaktor von $\Delta K_1^{\text{th},3D}(\varphi(z))$ des neuen 3D-Konzeptes in Abhängigkeit der z-Koordinate
$\Delta K_{\rm IC}$	Zyklische Risszähigkeit für Mode I

$\Delta K_{\mathrm{IC},k}$	Lokale zyklische Risszähigkeit für einen Rissfrontknoten
$\Delta K_{\rm IC}(\varphi)$	Risszähigkeit in Abhängigkeit von φ
$\Delta K_{\rm IC}(\varphi_0)$	Risszähigkeit in Richtung von φ_0
$\Delta K_{\rm IC}(\varphi_{\rm M})$	Risszähigkeit in Richtung von φ_{M}
$\Delta K_{ m V}$	Zyklischer Vergleichsspannungsintensitätsfaktor
$\Delta K_{ m V,max}$	Maximaler zyklischer Vergleichsspannungsintensitätsfaktor
$M_1; M_2$	Biegemomente
Ν	Lastwechselzahl
P, Q, R	Knotenpunkte aus der Gradierungsgrenze
<i>P</i> 1, <i>P</i> 2, <i>P</i> 2*; Р _{NB1} , Р _{NB1}	Orientierungspunkte für die Exponentialfunktion
Q	Orthogonale Matrix
R	Dreiecksmatrix
R	Spannungsverhältnis, R-Verhältnis
\widetilde{R}	Reduzierte Dreiecksmatrix
\mathbb{R}	Reelle Zahlen
S	Wert der Spline-Funktion
\overline{U} ,	Energiedichte
V	Verhältnis der Mixed Mode Beanspruchung des TSSR-Konzeptes
$W_{Bx}(x), W_{Bz}(x)$	Widerstandsmomente
$W_k^{\mathrm{x}}, W_k^{\mathrm{y}}$	Arbeit der äußeren Kräfte
Y	Geometriefaktor
Y _{Axi}	Geometriefaktor einer Axialrissrohrprobe
YI,ges	Gesamter Geometriefaktor für Mode I
YI, YII, YIII	Geometriefaktoren für Mode I, Mode II und Mode III
$Y_{\rm I,F}, Y_{\rm I,M}$	Geometriefaktoren für Mode I
a	Risslänge
ā, ã	Gemittelte Risslängen
<i>a</i> , <i>b</i>	Längen der Halbachsen einer Kerbe
a, b	Parameter der kleinsten Fehlerquadratsumme
ai	Spalte einer Matrix
a_k, b_k, c_k	Terme der Spline-Funktion

Δa	Rissinkrement
Δa_k	Rissinkrementes des Rissfrontknotenpunktes
Δa_{\max}	Maximales Rissverlängerungsinkrement
b	Breite des Übergangsbereichs bei einer Materialgradierung
b, v, x	Vektoren für die Berechnung der kleinsten Fehlerquadratsumme
d	Abstand zur Gradierungsgrenze
da	Rissverlängerung
dA	Rissflächenverlängerung
da/dN	Rissgeschwindigkeit/ Risswachstumsrate
dF_y	Druckkraft bei der Rissschließung
dU	Elastische Energie
dW	Rissschließungsarbeit
dx	Teilstück
$f(x) = c \cdot a^x$	Exponentialfunktion
$f(\Delta K_{\rm IC})$	Relevante Beanspruchungsfunktion in Abhängigkeit von $\Delta K_{\rm IC}$
$f(\Delta K_{ m I,th})$	Relevante Beanspruchungsfunktion
$f(\Delta K_{\mathrm{I,th}}(z))$	Relevante Beanspruchungsfunktion in Abhängigkeit von $\Delta K_{I,th}$
$f(\Delta K_{\rm V})$	Reale Beanspruchungsfunktion
$f(\Delta K_{\rm V}(z))$	Reale Beanspruchungsfunktion in Abhängigkeit von ΔK_V
<i>f</i> 1, <i>f</i> 2	Beanspruchungsfunktion der Materialien 1 und 2 des neuen 3D_Konzeptes
$f_1(\Delta K_{I,th,}(\varphi=\varphi_M))$	Beanspruchungsfunktion in Abhängigkeit von $\Delta K_{I,th}$ und $\varphi = \varphi_M$
$f_2(\Delta K_{I,\text{th},}(\varphi=\varphi_0))$	Beanspruchungsfunktion in Abhängigkeit von $\Delta K_{1,\text{th}}$ und $\varphi = \varphi_0$
$f_3(\Delta K_{\rm IC},(\varphi=\varphi_{\rm M}))$	Beanspruchungsfunktion in Abhängigkeit von $\Delta K_{\rm IC}$ und $\varphi = \varphi_{\rm M}$
$f_4(\Delta K_{\rm IC},(\varphi=\varphi_0))$	Beanspruchungsfunktion in Abhängigkeit von $\Delta K_{\rm IC}$ und $\varphi = \varphi_0$
<i>m, n</i>	Anzahl der Zeilen und Spalten einer Matrix
me	Parameter des ERDOGAN/RATWANI - Gesetzes
тр	Paramater der PARIS/ERDOGAN - Gleichung
n	Anzahl der Simulationsschritte
\overline{n}	Normalenvektor
<i>п</i> _{FM} , <i>p</i> , <i>q</i>	Parameter der FORMAN/METTU - Gleichung

q	Wert der kleinsten Fehlerquadratsumme
r, φ ,z	Zylinderkoordinaten am Riss
t	Probendicke
t	Zeit
Δt_k	Teilstück der Probendicke
u, v	Exponenten des Bruchkriterium nach RICHARD
\vec{u}	Verschiebungsvektor des J-Kriteriums
$\Delta u_{i-1,k}^{\mathrm{x}}$, $\Delta u_{i-1,k}^{\mathrm{y}}$	Knotenpunktverschiebungen
v(x), u(x)	Rissverschiebungen in x-Koordinate
w(x)	Länge des Restligamentes einer Axialrissrohrprobe
x, y, z	Kartesische Koordinaten

b) Griechische Symbole

α1, α2	Werkstoffparameter des Bruchkriteriums nach RICHARD
γ	Rissöffnungsfunktion
Eij	Dehnungstensor
λ, μ	Faktoren der Parameterform
ν	Querkontraktionszahl (Poisson-Zahl)
ρ	Kerbradius, Krümmungsradius der Kerbe
σ	Normalspannung, statische Spannung, äußere Bauteilbelastung
$\sigma(t)$	Zeitlich veränderliche Spannung
σ_{a}	Spannungsausschlag
σ_{Bx}, σ_{Bz}	Biegespannungskomponenten der Nennspannung σ_{Lig}
σ_{ij}	Komponenten des Spannungstensors an der Rissspitze
σ_{Lig}	Nennspannung im Restligament einer Axialrissrohrprobe
$\sigma_{ m max,}$ $\sigma_{ m min}$	Maximale und minimale Spannung
$\sigma_{\rm r}, \sigma_{\phi}$	Spannungskomponenten in Zylinderkoordinaten
$\sigma_{ m t}$	Tangentialspannung entlang des Kerbrandes

$\sigma_{x}, \sigma_{y}, \sigma_{z}$	Spannungskomponenten in kartesischen Koordinaten
$\sigma_{y}(x),$	Spannungskomponente in Abhängigkeit der x-Koordinate
σ_{Zug}	Zugspannungskomponente der Nennspannung σ_{Lig}
$\sigma_{\! \phi}$	Tangentialspannung
$\sigma_{\varphi,\max}$	Maximale Tangentialspannung
$\sigma_1^{'}$	Spezielle Hauptnormalspannung des σ_1 '-Kriteriums
$\Delta\sigma$	Schwingbreite der Spannung bei zyklischer Belastung
$\Delta \sigma_{ m max}$	Zyklische maximale Spannung
$\Delta\sigma_{\varphi}\sqrt{2\pi\cdot r}$	Zyklische Beanspruchungsfunktion des TSSR-Konzeptes
$\Delta \sigma_1 \sqrt{2\pi \cdot r}$	Zyklische Beanspruchungsfunktion des neuen 3D-Konzeptes
$ au_{xy}, au_{xz}, au_{yz}$	Schubspannungskomponenten in kartesischen Koordinaten
$ au_{xy}(x)$	Schubspannungskomponente in Abhängigkeit der x-Koordinate
$\tau_{r\phi}, \tau_{rz}, \tau_{\phi z}$	Schubspannungskomponenten in Polarkoordinaten
arphi	Polarkoordinate am Riss
$arphi_{ m M}$	Gradierungswinkel
$\varphi_{\mathrm{M}}(z)$	Gradierungswinkel in Abhängigkeit der z-Koordinate
$\mathcal{P}_{\mathrm{M},k}$	Gradierungswinkel eines Knotenpunktes
φ_0	Abknickwinkel
$\varphi_0(z)$	Abknickwinkel in Abhängigkeit der z-Koordinate
ψ_0	Verdrehwinkel

c) Abkürzungen

2D	Zweidimensional
3D	Dreidimensional
Abaqus	Anerkanntes Finite-Elemente-Programm
ADD-ON	Erweiterungsfunktionen
Ansys	Finite-Elemente-Programm
ASTM	American Society for Testing and Material

CT-Probe	Compact Tension-Probe
CTMM-Probe	Compact Tension Mixed Mode-Probe
ESZ	Ebener Spannungszustand
EVZ	Ebener Verzerrungszustand
FEM	Finite-Elemente-Methode
FGM	Funktional gradierte Materialien (engl.: functionally graded materials)
FKM	Forschungskuratorium Maschinenbau
FRANC3D/NG	Fracture Analysis Code 3D / Next Generation
FRANC/FAM	Fracture Analysis Code / Fachgruppe Angewandte Mechanik
GFK	Glasfaserverstärkte Kunststoffe
GUI	Benutzeroberfläche (engl.:Graphical User Interface)
ISO	International Organization for Standardization
LEBM	Linear-elastische Bruchmechanik
Lw	Lastwechsel
M1, M2	Material 1, Material 2
MEFR	Konzept der modifizierten Energiefreisetzungsrate
MTS	Maximale Tangentialspannung
MVCCI	Modified Virtual Crack Closure Integral (modifiziertes Rissschließungsintegal)
NASTRAN	Nasa Structural Analysis System
P, Q, R	Knotenpunkte in der Gradierungsebene
SFB/TR TRR30	Sonderforschungsbereich Transregio 30
SLM	Selectiv Laser Melting
TSSR	Kriterium der Tangentialspannung für gradierte Materialien nach SCHRAMM und RICHARD
ZTU	Zeit-Temperatur-Umwandlungs-Schaubild

ZUSAMMENFASSUNG

Technologische Weiterentwicklungen bringen stets neue Herausforderungen mit sich. Im Hinblick auf gradierte Materialien sind die Kenntnisse der lokalen Eigenschaftskennwerte ebenso relevant, wie das Rissausbreitungsverhalten in eben solchen rissbehafteten Bauteilen und Strukturen. Vor diesem Hintergrund ist das primäre Ziel dieser Dissertation, einen Beitrag für eine realitätsgetreue Aussage über das Rissausbreitungsverhalten in homogenen, isotropen sowie funktional gradierten Strukturen zu geben. Bereits etablierte bruchmechanische Konzepte, ermöglichen eine realitätsnahe Aussage über das Rissausbreitungsverhalten in homogenen Strukturen. Der Einfluss einer Materialgradierung wird hierbei zu meist vernachlässigt. Daher wurde ein neues 3-dimensionales Konzept erarbeitet, um eine Aussage über das Rissausbreitungsverhalten in Hinblick auf den Einfluss einer bruchmechanischen Materialgradierung geben zu können. Hierbei liegt der Fokus insbesondere auf der Rissausbreitungsrichtung unter Berücksichtigung der vorliegenden Gradierungsgrenzen. Um ein großes Spektrum an Kombinationsmöglichkeiten für eine Materialgradierung abbilden zu können, wird ein numerisches Risssimulationsprogramm für eine räumliche Rissausbreitungsvorhersage genutzt. Durch Optimierungsmaßnahmen zur Programmstabilität und Implementieren des neuen bruchmechanischen Konzeptes das Simulationsprogramm in ADAPCRACK3D^{Version_KD15}, sind Simulationen des Risswachstums in homogenen sowie gradierten Strukturen möglich. Erste Ergebnisse zeigen eine deutliche Verbesserung der Programmstabilität bei der Berechnung von homogenen Strukturen. Außerdem kann der Einfluss der Materialgradierung auf das Risswachstum individuell vorhergesagt werden.

ABSTRACT

Technological advances mean new challenges. With regard to graded materials, the knowledge of the local property characteristics is as relevant as the crack propagation behaviour in the same crack-prone components and structures. Referring to this knowledge, the primary aim of this dissertation is to make a contribution to a realistic statement about the crack propagation behaviour in homogeneous, isotropic and functional graded structures. Already established fracture mechanic concepts allow a realistic statement about the crack propagation behaviour in homogeneous structures. The influence of a material gradation is usually neglected. Therefore a new 3-dimensional concept was developed in order to be able to give a statement about the crack propagation behaviour with regard to the influence of a fracture mechanical graded material. Here the focus is particularly on the crack propagation direction, taking into account the present gradation-line. In order to be able to display a wide range of combination possibilities for a material gradation, a numerical crack simulation program is used for a spatial crack propagation prediction. Through optimization measures for program stability and the implementation of the new fracture mechanical concept into the simulation program ADAPCRACK3D^{VERSION_KD15}, simulations of crack growth in homogeneous as well as graded structures are possible. Initial results show a significant improvement in the stability of the program in the calculation of homogeneous structures. In addition, the influence of the material gradation on the crack growth can be predicted individually.