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Abstract

A broad range of engineering applications are governed by coupled multifield phenomena. Due to
their highly nonlinear nature, fluid-structure interaction problems belong to the most challenging
problems in this area. Prominent examples for such problems can, in particular, be found in the
maritime industry. In this thesis, emphasis is placed on the numerical investigation of the fluid-
structure interaction of a floating offshore wind turbine and of the landing maneuver of a crew
transfer vessel to an offshore wind turbine. Due to the ever increasing computational resources,
even such highly complex problems have become amenable to a numerical analysis, which helps to
provide a deeper insight into the governing physical processes, to reduce the number of expensive
experiments, to increase the confidence in the final product, and, last but not least, to reduce
costs by shortening the product development cycle.

In the present work, a partitioned solution approach is followed in order to split a coupled
problem into separate subproblems, which are coupled by iteratively exchanging the relevant
field quantities within a time increment. This procedure enables the use of different spatial and
temporal discretization schemes in each of the subdomains. Existing specialized and efficient
solvers can then be reused to solve the subproblems — which significantly enhances modularity,
software reusability, and also performance. However, these advantages come at the expense of re-
duced stability of the solution process. Appropriate measures must hence be taken to circumvent
stability problems and to accelerate the convergence of the partitioned solution procedure. There-
fore, different predictors are proposed so as to provide a reasonable initial guess for the solution in
the current time increment and to help to reduce the number of implicit iterations. Regarding the
transfer of the relevant field quantities between possibly non-conforming discretizations, several
mesh-independent and mesh-dependent interpolation schemes are presented and assessed with
respect to accuracy and computational efficiency. Moreover, efficient convergence acceleration
schemes, which are suitable to stabilize and accelerate the coupling procedure, are discussed in
detail.

In order to simplify the computer implementation of customized coupling strategies for various
kinds of multifield problems, the C++ software library comana is presented. It offers a vast range
of modular and well-tested algorithmic building blocks, which can easily be combined to create a
coupling algorithm tailored to the specific problem under consideration. Based on a master/slave
architecture, comana allows the user to select from plenty of solvers for different physical phe-
nomena and to simply exchange them in a black-box manner. Shared- and distributed-memory
parallelized solvers can be integrated into a coupled computation without difficulty rendering
even large computations possible. Preparing a solver for a coupled simulation only requires an
adapter module and very little modifications in the solver code. Adapters for various solvers for
thermodynamics, fluid and structural dynamics are readily provided; adapters not yet available
can be implemented with little effort.

In the last part of this work, the software library is verified by means of numerous benchmark
problems — and it is also applied to several advanced applications from the maritime industry. Ex-
ploiting the full versatility of the software library comana, it is demonstrated that the partitioned
solution approach is well suited to solve even highly complex and strongly coupled problems ef-
ficiently. Particular focus is placed on the fluid-structure interaction of a floating offshore wind
turbine and on the landing maneuver of a service ship to an offshore wind turbine, as specific
applications from the maritime industry.
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