Fortschritt-Berichte VDI

VDI

Reihe 18

Mechanik/ Bruchmechanik

M.Sc. Lars Radtke, Hamburg

Nr. 353

A partitioned solution approach for fluid-structure interaction problems in the arterial system

https://doi.org/10.51202/9733186353184-I Generiert durch IP '18.217.65.190', am 17.05.2024, 05:27:32 stellen und Weitergeben von Kopien dieses PDFs ist nicht zulöss

https://doi.org/10.51202/9783186353184-I Generiert durch IP '18.217.65.190', am 17.05.2024, 05:27:32. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

A partitioned solution approach for fluid-structure interaction problems in the arterial system

Vom Promotionsausschuss der Technischen Universität Hamburg

zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

genehmigte Dissertation

von

Lars Radtke

aus

Itzehoe

2020

Betreuer: Prof. Dr.-Ing. habil. Alexander Düster

Vorsitzender des Promotionsausschusses

Prof. Dr.-Ing. Robert Seifried

Erstgutachter

Prof. Dr.-Ing. Alexander Düster

Zweitgutachter

Prof. Dr. med. Eike Sebastian Debus Prof. Dr.-Ing. Robert Seifried

Tag der mündlichen Prüfung

11. Juli 2019

Fortschritt-Berichte VDI

Reihe 18

Mechanik/ Bruchmechanik M.Sc. Lars Radtke, Hamburg

A partitioned solution approach for fluid-structure interaction problems in the arterial system

vdi verlag

Radtke, Lars

A partitioned solution approach for fluid-structure interaction problems in the arterial system

Fortschr.-Ber. VDI Reihe 18 Nr. 353. Düsseldorf: VDI Verlag 2020. 298 Seiten, 131 Bilder, 20 Tabellen. ISBN 978-3-18-335318-7, ISSN 0178-9457, € 100,00/VDI-Mitgliederpreis € 90,00.

 ${\it Keywords:}\ {\it fluid-structure}\ {\it interaction}\ -\ {\it blood}\ {\it flow}\ -\ {\it partitioned}\ {\it coupling}\ -\ {\it high-order}\ {\it finite}\ {\it elements}$

The present work is concerned with the partitioned solution of the multifield problem arising from a hierarchical modeling approach to cardiovascular fluid-structure interaction. Different strategies to couple the participating field solvers are investigated in detail. This includes staggered and parallel coupling algorithms as well as different methods for convergence acceleration, spatial interpolation and temporal extrapolation of coupling quantities. In the developed modeling and simulation approach, a fully resolved model of a segment of the arterial network is coupled to reduced order models in order to account for the influence of the surrounding.

There is experimental evidence that hemodynamic quantities such as the wall shear stress promote the progression cardiovascular disease. Cardiovascular FSI simulations, that can predict these quantities, are therefore of great interest and can aid in surgical planning and optimization of anastomoses shapes and graft materials.

Bibliographische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet unter <u>www.dnb.de</u> abrufbar.

Bibliographic information published by the Deutsche Bibliothek

(German National Library) The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie (German National Bibliography); detailed bibliographic data is available via Internet at www.dnb.de.

Arbeitsgruppe Numerische Strukturanalyse mit Anwendungen in der Schiffstechnik

© VDI Verlag GmbH · Düsseldorf 2020

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe (Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung, vorbehalten.

Als Manuskript gedruckt. Printed in Germany. ISSN 0178-9457 ISBN 978-3-18-335318-7

> https://doi.org/10.51202/9783186353184-I Generiert durch IP '18.217.65.190', am 17.05.2024, 05:27:32. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig.

Acknowledgements

During my work at the Institute for Ship Structural Design and Analysis at Hamburg University of Technology, from which this thesis has emerged, many great people have helped, inspired and encouraged me in one or the other way. I would like to say "thank you" here - without their input, this output would not exist.

First of all, I would like to express my gratitude to my supervisor Prof. Düster. His expertise in a broad range of topics in the field of numerical computation, calmness in explaining and enthusiasm when discussing new ideas have guided me through my first years in academia. Danke dafür! Having started at the same day in the same office, my colleague Marcel König deserves my special thanks as well. His tenacity and skills, which he was always willing to share, have contributed a lot to this thesis. Vielen Dank! Of course, I would like to thank all of my colleague at the institute for their helpfullness the many fruitful discussions. Danke!

Zooming out, I owe great thanks to my parents Christel and Ronald. They have perhaps once sparked my interest in science and support me unconditionally and without exception in everything I do. Danke für alles! I would also like to thank my friends, many of whom have inspired me technically - oftentimes without an engineering background - and all of whom have encouraged me to stay at the university after may Masters degree. Vielen Dank!

Finally, I would express my deepest thanks to my partner Johanna for her everlasting support, comprehension and love. Ich liebe Dich!

https://doi.org/10.51202/9783186353184-I Generiert durch IP '18.217.65.190', am 17.05.2024, 05:27:32. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

Contents

Li	List of medical terms IX					
A	bstra	ct		х		
1	Intr	oductio	on	1		
2	Fluid-structure interaction in the arterial system					
	2.1	The c	ardiovascular system	7		
		2.1.1	Anatomy of the larger arteries	8		
		2.1.2	Physical characteristics of arterial blood flow	10		
		2.1.3	Cardiovascular diseases	12		
		2.1.4	Vascular bypass grafts	14		
	2.2	Comp	outational modeling	16		
		2.2.1	Fluid-structure interaction	17		
		2.2.2	Arterial hemodynamics	18		
3	Med	chanica	I modeling of the arterial system	23		
	3.1	Coupl	ed problems	25		
		3.1.1	Solution approaches	25		
	3.2	Conti	nuum mechanics	28		
		3.2.1	Conservation laws on moving domains	29		
		3.2.2	Structural mechanics	35		
		3.2.3	Fluid mechanics	45		
		3.2.4	Interface constraints and domain motion	47		
3.3 Mechanical models for the cardiovascular system				50		
		3.3.1	Constitutive equations for soft tissue	50		
		3.3.2	Constitutive equations for blood	56		
		3.3.3	One-dimensional models	58		
		3.3.4	Windkessel models	61		
		3.3.5	Models for the surrounding tissue	62		
		3.3.6	Velocity profiles	64		

		3.3.7	Hemodynamic quantities	66
4	Nur	nerical	methods	69
	4.1	Space	and time discretization $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	70
		4.1.1	High-order finite elements for structural mechanics .	70
		4.1.2	Finite volumes for fluid mechanics in moving domains	83
		4.1.3	Taylor-Galerkin method for one-dimensional blood flow	88
		4.1.4	Solvers for ordinary differential equations	90
	4.2	Geom	etry and mesh generation	93
		4.2.1	G^1 -continuous surface construction	95
		4.2.2	Polynomial G^1 PN quads	99
		4.2.3	General polynomial G^1 quads $\ldots \ldots \ldots \ldots \ldots$	104
	4.3	Partit	ioned solution approach	112
		4.3.1	Coupling algorithms	113
		4.3.2	Convergence acceleration	117
		4.3.3	Predictors	124
		4.3.4	Convergence criteria	127
		4.3.5	Interpolation	128
	4.4	Coupl	ing software	141
		4.4.1	Software design	143
		4.4.2	Inter process communication	145
		4.4.3	Implementation of coupling algorithms	147
		4.4.4	Field solver manipulation	147
5	Nun	nerical	investigations	153
	5.1	Prelin	ainary analyses	153
		5.1.1	Structural mechanics	153
		5.1.2	Fluid dynamics	168
		5.1.3	Reduced models	171
		5.1.4	Interpolation	174
		5.1.5	Load integration	179
	5.2	Coupl	ed benchmark problems	183
		5.2.1	Multi-body system	184
		5.2.2	Lid-driven cavity flow	199
		5.2.3	Two-dimensional flag in channel flow	204
		5.2.4	Pulse wave in an elastic tube	208
	5.3	Arteri	al fluid-structure interaction	212
		5.3.1	Initial boundary value problem	213

		5.3.2	Coupling algorithm	214
		5.3.3	Test case	215
		5.3.4	Results	217
6	Δnn	lication	16	220
U	лрр 6 1	Hemo	dynamics in the scope of vessel geometry and material	220
	0.1	611	Decoupled simulations	220
		6.1.2	Coupled simulations	225
	62	Hemo	dynamics in idealized end-to-side anastomoses	220
	0.2	621	Simulation setup	228
		622	Results	220
	63	Hemo	dynamics in a patient specific anastomosis	235
	0.0	631	Study case	235
		6.3.2	Modeling and simulation approach	237
		6.3.3	Results – one-dimensional analysis	242
		6.3.4	Results – three-dimensional analysis	247
		6.3.5	Discussion	251
_	-			
7	Sum	mary a	and Outlook	253
Αŗ	penc	lix		257
Ap	openc A.1	lix Tensor	r algebra	257 257
Ap	A.1	lix Tensor A.1.1	r algebra	257 257 257
Aţ	A.1	lix Tensor A.1.1 A.1.2	r algebra	257 257 257 257
Ap	A.1	lix Tensor A.1.1 A.1.2 A.1.3	r algebra	257 257 257 257 258
Aŗ	A.1 A.2	lix Tensor A.1.1 A.1.2 A.1.3 Contin	r algebra	257 257 257 257 258 258
Ar	A.1 A.2	lix Tenson A.1.1 A.1.2 A.1.3 Contin A.2.1	r algebra	257 257 257 257 258 258 258
Aŗ	A.1 A.2 A.3	lix Tensor A.1.1 A.1.2 A.1.3 Contin A.2.1 Finite	r algebra	257 257 257 258 258 258 258 258
Aŗ	A.1 A.2 A.3	lix Tensor A.1.1 A.1.2 A.1.3 Contin A.2.1 Finite A.3.1	r algebra	257 257 257 258 258 258 258 258 259 259
Aŗ	A.1 A.2 A.3	lix Tensor A.1.1 A.1.2 A.1.3 Contin A.2.1 Finite A.3.1 A.3.2	r algebra	 257 257 257 258 258 258 259 259 259
Aŗ	A.1 A.2 A.3	lix Tensor A.1.1 A.1.2 A.1.3 Contin A.2.1 Finite A.3.1 A.3.2 A.3.3	r algebra	257 257 257 258 258 258 258 259 259 259 260
Aŗ	A.1 A.2 A.3	lix Tensor A.1.1 A.1.2 A.1.3 Contin A.2.1 Finite A.3.1 A.3.2 A.3.3 A.3.4	r algebra	257 257 257 258 258 258 258 259 259 259 260 260 261
Aŗ	A.1 A.2 A.3	lix Tensor A.1.1 A.1.2 A.1.3 Contin A.2.1 Finite A.3.1 A.3.2 A.3.3 A.3.4 A.3.5	r algebra	257 257 257 258 258 258 259 259 259 259 260 261 261
Aŗ	A.1 A.2 A.3	lix Tensor A.1.1 A.1.2 A.1.3 Contin A.2.1 Finite A.3.1 A.3.2 A.3.3 A.3.4 A.3.5 A.3.6	r algebra	257 257 257 258 258 258 259 259 259 260 261 261 261
Aŗ	A.1 A.2 A.3 A.4	lix Tensor A.1.1 A.1.2 A.1.3 Contir A.2.1 Finite A.3.1 A.3.2 A.3.3 A.3.4 A.3.5 A.3.6 Taylor	r algebra	257 257 257 258 258 258 259 259 259 260 261 261 261 261
Aŗ	A.1 A.2 A.3 A.4	lix Tensor A.1.1 A.1.2 A.1.3 Contin A.2.1 Finite A.3.1 A.3.2 A.3.3 A.3.4 A.3.5 A.3.6 Taylor A.4.1	r algebra	257 257 257 258 258 258 259 259 259 260 261 261 261 261 262 262
Aŗ	A.1 A.2 A.3 A.4	lix Tensor A.1.1 A.1.2 A.1.3 Contin A.2.1 Finite A.3.1 A.3.2 A.3.3 A.3.4 A.3.5 A.3.6 Taylor A.4.1 A.4.2	r algebra	257 257 257 258 258 259 259 259 260 261 261 261 262 262 262 263

Bibliography 269				
A.9	Applications	37		
A.8	Preliminary investigations	36		
A.7	Coupling software	36		
A.6	Multi body system	34		

List of medical terms

abdominal	Refers to the abdomen (stomach)
adventitia	Outermost layer of an arterial wall
anastomosis	Here, connection between bypass graft and artery
aorta	The largest artery in the body
atherosclerosis	Inflammatory disease in arteries
atrium	Smaller chambers of the heart
cardiovascular	Refers to the heart and the circulatory system
coronary	Refers to the heart
diastole	Phase of the cardiac cycle, where blood enters
	in the left ventricle
distal	Away from the body center, here downstream
dorsal	Refers to the back
endothelium	Layer of cells at the lumen boundary of an artery
erythrocytes	red blood cell
femoral	Refers to the thigh region
iliac	Refers to the intestine region
intima	Innermost layer of an arterial wall
intimal hyperplasia	Abnormal thickening of the intima
leucocytes	White blood cell
media	Middle layer of an arterial wall
proximal	Towards the body center, here upstream
pulmonary	Refers to the lungs
systole	Phase of the cardiac cycle, where blood leaves
	the left ventricle
thrombocytes	Platelets activating blood clotting
thrombosis	Formation of a blood clot
ventricle	Larger chambers of the heart

Abstract

The present work is concerned with the partitioned solution of the multifield problem arising from a hierarchical modeling approach to cardiovascular fluid-structure interaction. Different strategies to couple the participating field solvers are investigated in detail. This includes staggered and parallel coupling algorithms as well as different methods for convergence acceleration, spatial interpolation and temporal extrapolation of coupling quantities as well as convergence criteria. In the developed modeling and simulation approach, a fully resolved model of a segment of the arterial network is coupled to reduced order models in order to account for the influence of the surrounding. The resulting problem is solved using five specialized field solvers, namely a fluid and a structural solver for the three-dimensional fluid-structure interaction problem, a one-dimensional blood flow solver for the surrounding vessel network, a solver for different types of windkessel models used to obtain physiological boundary conditions at the distal ends of the one- and three-dimensional models, and a solver for an elastic foundation that describes the surrounding tissue. The applicability of the solution approach is demonstrated in terms of several exemplary applications including studies of idealized and patient specific end-to-side anastomoses of bypass grafts. They are known to be prone to the development of intimal hyperplasia, i.e. a thickening of the vessel wall that may lead to occlusions in the anastomosis region. There is experimental evidence that hemodynamic quantities such as the wall shear stress promote the progression of this secondary disease. Cardiovascular FSI simulation are therefore of great interest and can aid in surgical planning and optimization of anastomoses shapes and graft materials.