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Abstract

Over the last decade, nonstandard discretization methods based on the fictitious domain
approach have gained increased interest. In these methods, the physical domain is embed-
ded into a fictitious one — resulting in an extended domain of a simple shape. Consequently,
structured meshes or Cartesian grids can be employed for the spatial discretization, thus
simplifying the mesh generation process significantly. Due to this reason, such methods
are a powerful tool for the numerical analysis of complex structures such as foam-like ma-
terials. A well-known example for these methods is the finite cell method (FCM), which
combines the fictitious domain approach with high order finite elements. In the FCM,
these elements are denoted as finite cells — thus giving the method its name — in order to
distinguish them from boundary-conforming finite elements. However, the simplification
in the mesh generation is accompanied by several numerical difficulties, induced by cut
finite cells, reducing the efficiency and robustness of the FCM. In this thesis, we focus on
the following issues in order to further improve the FCM.

The first topic is related to the numerical integration of finite cells. In general
adaptive Gaussian quadrature schemes are used — commonly resulting in a large number of
integration points, which renders the numerical integration computationally expensive. To
overcome this problem, we propose novel quadrature methods based on moment fitting.
Thereby, a promising approach is introduced that circumvents the necessity of having to
solve an equation system. We show that this moment fitting method results in efficient and
accurate quadrature rules for linear problems of the FCM, reducing the effort during the
numerical integration process significantly. Moreover, in order to improve the performance
for nonlinear applications, an adaptive moment fitting approach is presented.

The second topic addresses the ill-conditioning of the global system. To improve
the conditioning behavior, we propose a new basis function removal approach applied
to the hierarchic shape functions of the FCM. In this approach, shape functions with a
small contribution to the diagonal entries of the global system matrix are removed from the
ansatz. To this end, a global criterion based on the discrete gradient operator is introduced
to estimate the contribution. Moreover, by maintaining the nodal modes of the hierarchic
shape functions, the modified basis preserves the representation of the rigid body modes.
Several examples show that the basis functions removal improves the conditioning behavior
and, thus, the performance of the FCM significantly.

The last topic is related to the issue of severely distorted finite cells for appli-
cations in finite strain. To overcome this problem, we introduce a novel remeshing
strategy that is based on a multiplicative decomposition of the deformation gradient.
The essential idea of this strategy is to create a new mesh whenever the analysis fails due
to severe distortions of the computational mesh — and then to continue the simulation.
Further, a local radial basis function interpolation scheme for the implementation of the
data transfer is presented. Considering problems of different complexity, we show that the
remeshing strategy allows to improve the robustness behavior of the FCM considerably,
especially in combination with the presented basis function removal.
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