# Fortschritt-Berichte VDI

## VDI

## Reihe 9

Elektronik/Mikround Nanotechnik Dr.-Ing. Björn Jakob Müller, Frankfurt am Main

## Nr. 396

Improvement of Cu(In,Ga)(S,Se)<sub>2</sub> thin film Solar Cells with the help of Gallium and Sulfur Gradients

https://doi.org/10.51202/97.3186396099-1 Generiert durch IP '18.221.140.111', an 17.05.2024, 15:37:41 stellen und Weitergeben von Kopien dieses PDFs ist nicht zuläss

https://doi.org/10.51202/9783186396099-I Generiert durch IP '18.221.140.111', am 17.05.2024, 15:37:41. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig.

## Acknowledgment

At this point I would like to thank everybody very much who has accompanied and supported me during my PhD time.

My special thanks goes to Prof. Dr. Herr and the company Robert Bosch GmbH for this very interesting topic. I have learned a lot about the section of solar cells, material science and semiconductor physics. I'm very grateful to Prof. Dr. Herr about his excellent support during my whole PhD time. In the seminar of the Institute of Micro- and Nanomaterials I was trained to give presentations and I additionally have learned a lot from the positive discussions during the seminar.

Additionally I would like to thank Prof. Dr. Walter for the friendly takeover of the second opinion of the thesis. Especially in the field of thin film solar cells, solar cell physics and SCAPS simulations he has given me a lot of valuable inputs.

On behalf of the Robert Bosch GmbH, I would like to thank my company supervisors Siggi and Veronika. Additionally I would like to thank my several direct and indirect superiors during this time Leonore Glanz, Carsten Herweg, Thomas Wagner, Mr. Schiller, Mr. Treutler and Mr. Rapp who have given me the best boundary conditions during the thesis. Furthermore I would like to thank all the colleagues from the departments of CR/ANA, CR/ARM, CR/ARC and CR/ARY. I also want to name the former colleagues from the BoschSolar CISTech GmbH, especially Frank Hergert, for the very helpful discussions about publication drafts and the progress of the thesis. For the proof-reading (language correction) I would like to thank Agnieszka as well as Emilia and Benjamin. All my colleagues from the office and the lab ("Technikum") supported me great and made the time enjoyable. Special thanks to Andreas, Anja, Armin, Arthur, Christiane, Dirk, Erhard, Frederik, Guido, Heiko, Helmut, Herbert, Huu Phuc, Ingo, Yvonne, Jochen, Julia, Juergen, Kathrin, Klaus, Lars, Lutz, Magret, Maira, Markus, Markus, Martin, Minh, Mr. Neidhardt, Mr. Schmidt, Mr. Schneider, Ms. Klose, Ney, Nicolas, Nils, Oliver, Patrick, Petra, Rainer, Sarah, Stefan, Stefan, Stefan, Stephan, Silvan, Susanne, Thomas, Thomas, Tina, Ulrich, Valerie, Victoria, Ulrike, Uwe and Wladislaw (I hope that I have not forgotten anybody).

Thanks to the Bosch PhD program I had the possibility to learn more about the Bosch company and additionally I was able to spend some nice activities after the long working time.

The good discussions with the CIGS PhD team Christian, Rou Hua and Ulrich have helped a lot for the progress of the thesis and for the scientific as well as the private exchange.

Thanks for the support of my interns and master students Borirak, Bradley, Christian, Joel, Markus and Thomas in the lab, with evaluation topics and during the interpretation of data.

Many thanks to all of my friends in Gladenbach/Marburg, Gerlingen/Stuttgart and Tuebingen/Reutlingen who made the time beside the thesis so wonderful. At this point I want especially name Felix as a good friend who always had an open ear for me.

A lot thanks to my parents Sigrid and Ernst who have supported me during my whole school and study time. Furthermore they encouraged me again and again during the PhD time very often. My brother Alexander has supported me, especially in the hard times during the thesis for what I'm very thankful for. Thank you for being such good parents, a good brother and good friend.

Last but not least I would thank my girlfriend Ines Madeleine who has encouraged me during the stressful phase of the thesis.

# Fortschritt-Berichte VDI

## Reihe 9

Elektronik/Mikround Nanotechnik Dr.-Ing. Björn Jakob Müller, Frankfurt am Main

Nr. 396

Improvement of Cu(In,Ga)(S,Se)<sub>2</sub> thin film Solar Cells with the help of Gallium and Sulfur Gradients

#### Müller, Björn Jakob

## Improvement of Cu(In,Ga)(S,Se)<sub>2</sub> thin film Solar Cells with the help of Gallium and Sulfur Gradients

Fortschr.-Ber. VDI Reihe 09 Nr. 396. Düsseldorf: VDI Verlag 2018. 202 Seiten, 101 Bilder, 22 Tabellen. ISBN 978-3-18-339609-2, ISSN 0178-9422, € 71,00/VDI-Mitgliederpreis € 63,90.

 $\label{eq:starsest} \begin{array}{l} \mbox{Für die Dokumentation:} Solarzelle, Dünnschichtsysteme, Phasenumwandlungen, step elemental layer Prozess, Gradient, Diffusion, Diffusionsbarriere, Chalkopyrite, Cu(ln,Ga)(S,Se)_2, in-situ Analyse \end{array}$ 

Das Ziel der Arbeit besteht darin, optimierte Absorber für das Dünnschicht Solarzellensystem Cu(In,Ga)(S,Se)<sub>2</sub> mit Hilfe von industrienahen Prozessen herzustellen. Der industrienahe zweistufige Herstellungsprozess beinhaltet das Aufbringen von metallischen Vorläuferschichten (Kathoden zerstäubung & thermische Verdampfung) und die Bildung des Chalkopyrit Absorbers in Folge des thermischen Ausheizschrittes. Der gezielte Einbau von Konzentrationsgradienten bestehend aus Ga/In und Se/S wird werkstoffseitig am Absorber strukturell analysiert und für die elektronischen Eigenschaften der Solarzelle optimiert. Zur Justage des Ga/In Profils werden sowohl das optimierte Temperaturprofil als auch ein Überangebot an Chalkogenen verwendet. Für die Einstellung des Se/S Profils im Chalkopyrit dienen das Ausgangsverhältnis sowie ein nachträglicher S Einbau (Erweiterung auf einen drei-stufigen Prozess). Um den Rückkontakt der Solarzelle vor den aggressiven Chalkogenen während des Prozesses zu schützen, wurde eine Mo-N Diffusionsbarriere entwickelt.

#### Bibliographische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet unter <u>www.dnb.de</u> abrufbar.

#### Bibliographic information published by the Deutsche Bibliothek

(German National Library) The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie (German National Bibliography); detailed bibliographic data is available via Internet at www.dnb.de.

#### © VDI Verlag GmbH · Düsseldorf 2018

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe (Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung, vorbehalten.

Als Manuskript gedruckt. Printed in Germany. ISSN 0178-9422 ISBN 978-3-18-339609-2

> https://doi.org/10.51202/9783186396099-I Generiert durch IP '18.221.140.111', am 17.05.2024, 15:37:41. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig.

## Inscription

### To my parents and to my brother.

https://doi.org/10.51202/9783186396099-I Generiert durch IP '18.221.140.111', am 17.05.2024, 15:37:41. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig.

## Contents

| 1 | Introduction |                               |                                                                                                                                |    |  |  |
|---|--------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----|--|--|
|   | 1.1          | .1 Motivation                 |                                                                                                                                |    |  |  |
|   | 1.2          | Outlin                        | $e of the thesis \dots $ | 3  |  |  |
| 2 | Func         | lamenta                       | als of chalcopyrite solar cell devices                                                                                         | 4  |  |  |
|   | 2.1          | Basic                         | material properties                                                                                                            | 4  |  |  |
|   |              | 2.1.1                         | Crystal and band structure of chalcopyrites                                                                                    | 4  |  |  |
|   |              | 2.1.2                         | Ternary chalcopyrites                                                                                                          | 8  |  |  |
|   |              | 2.1.3                         | Diffusion processes in thin film systems                                                                                       | 8  |  |  |
|   | 2.2          | opyrite solar cell properties | 12                                                                                                                             |    |  |  |
|   |              | 2.2.1                         | Physics of single junction solar cells                                                                                         | 12 |  |  |
|   |              | 2.2.2                         | Ideal solar cell                                                                                                               | 16 |  |  |
|   |              | 2.2.3                         | Real solar cells                                                                                                               | 20 |  |  |
|   |              | 2.2.4                         | Band gap grading in CIGSSe solar cells $\ldots \ldots$                                                                         | 23 |  |  |
| 3 | Expe         | erimenta                      | al procedure                                                                                                                   | 32 |  |  |
|   | 3.1          | Depos                         | ition process for chalcopyrite solar cells                                                                                     | 32 |  |  |
|   |              | 3.1.1                         | Co-evaporation (CE) process                                                                                                    | 33 |  |  |
|   |              | 3.1.2                         | Stacked elemental layer (SEL) process                                                                                          | 34 |  |  |
|   | 3.2          | Chara                         | cterization methods                                                                                                            | 36 |  |  |
|   |              | 3.2.1                         | Optical and structural characterization techniques .                                                                           | 37 |  |  |
|   |              | 3.2.2                         | Electrical characterization                                                                                                    | 48 |  |  |

| 4   | Resi   | lts and | discussion                                                       | 51  |
|-----|--------|---------|------------------------------------------------------------------|-----|
|     | 4.1    | Modif   | ication of the Gallium profile in CIGSe $\ldots$                 | 51  |
|     |        | 4.1.1   | Temperature dependent phase formation                            | 52  |
|     |        | 4.1.2   | Phase formation with different Selenium supply                   | 62  |
|     |        | 4.1.3   | Phase formation with a diffusion barrier layer at the            |     |
|     |        |         | back contact                                                     | 84  |
|     |        | 4.1.4   | Influence of high temperature processes                          | 100 |
|     | 4.2    | Modif   | ication of the Sulfur profile in CIGSSe                          | 123 |
|     |        | 4.2.1   | Temperature dependent phase formation                            | 123 |
|     |        | 4.2.2   | Influence of different Se to S ratios                            | 129 |
|     |        | 4.2.3   | Ex- and in-situ investigation of sulfur diffusion into           |     |
|     |        |         | CIGSe                                                            | 149 |
| 5   | Sum    | mary a  | nd prospects                                                     | 164 |
| A   | App    | endix   |                                                                  | 167 |
|     | A.1    | Introd  | luction into SCAPS simulations                                   | 167 |
|     | A.2    | Deriva  | ation of $J_{grad}$ with the analytical approach $\ldots \ldots$ | 169 |
| Bil | bliogr | aphy    |                                                                  | 172 |

## Nomenclature

The following abbreviations, symbols and codes are used in the thesis:

| a:               | Lattice constant                     | CGI:                                     | Cu/(Ga+In) concentration<br>ratio            |  |
|------------------|--------------------------------------|------------------------------------------|----------------------------------------------|--|
| a(E):            | Absorptance                          | CuGaS                                    | Se: Copper Gallium                           |  |
| Ag:              | Silver                               | Silver                                   |                                              |  |
| Al:              | Aluminium                            | CuGaS                                    | Se <sub>2</sub> : Copper Gallium             |  |
| $\alpha$ :       | Absorption coefficient               |                                          | Diselenide                                   |  |
| $\alpha_{eff}$ : | Effective absorption                 | $\chi$ :                                 | Electron affinity                            |  |
| - 5 5            | coefficient                          | Cu(In,Ga)Se <sub>2</sub> : Copper Indian |                                              |  |
| AZO:             | Al:ZnO                               |                                          | Gallium Diselenide                           |  |
|                  | Back surface field                   | Cu(In,Ga)(S,Se) <sub>2</sub> : Copper    |                                              |  |
| BSF:             |                                      | •                                        | Indium Gallium Disulfo                       |  |
| β:               | Linear $\mathbf{E}_g$ grading degree |                                          | Selenide                                     |  |
| c:               | Concentration                        | CuInS                                    | 2: Copper Indium Disulfide                   |  |
| $c_L$ :          | Speed of light                       | CuInS                                    | e <sub>2</sub> : Copper Indium<br>Diselenide |  |
| CB:              | Conduction band                      | Cu:                                      | Copper                                       |  |
| CBD:             | Chemical bath deposition             | $d_1$ :                                  | Back grading distance                        |  |
| CE:              | Co-evaporation                       | $d_2$ :                                  | Front grading distance                       |  |
|                  |                                      |                                          |                                              |  |

https://doi.org/10.51202/9783186396099-I Generiert durch IP '18.221.140.111', am 17.05.2024, 15:37:41. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

| D:             | Diffusion coefficient of a diluted system | <b>FWHM:</b> Full width at half maximum |                                                    |  |
|----------------|-------------------------------------------|-----------------------------------------|----------------------------------------------------|--|
| $d_c$ :        | Critical distance                         | g:                                      | Carrier generation rate                            |  |
| DC:            | Direct current                            | G:                                      | Generation current                                 |  |
| Di:            | Diode                                     | Ga:                                     | Gallium                                            |  |
| $d_{hkl}$ :    | Lattice spacing distance                  | GDOE                                    | S: Glow discharge optical<br>emission spectrometry |  |
| $D_n$ :        | Carrier diffusion coefficient             | CIXB                                    | <b>D:</b> Crazing incidence X-ray                  |  |
| DOS:           | Density of states                         | GIMU                                    | diffraction                                        |  |
| ξ:             | Electric field                            | GGI:                                    | Ga/(Ga+In) concentration                           |  |
| $\xi_{grad}$ : | Electric field in graded<br>absorber      |                                         | ratio                                              |  |
|                |                                           | $G_h$ :                                 | Hole generation current                            |  |
| <b>e</b> -:    | Electron                                  | $G_n$ :                                 | Electron generation                                |  |
| EDX:           | Energy dispersive X-ray                   |                                         | current                                            |  |
|                | spectroscopy                              | $\mathbf{h}^+$ :                        | Hole                                               |  |
| $E_F$ :        | Fermi energy                              | $\hat{H}_{eff}^{1e}$ :                  | Effective one electron<br>Hamiltonian              |  |
| $E_g$ :        | Band gap                                  | нтс.                                    | High tomporature glass                             |  |
| $E_n$ :        | One electron energy                       | пт <del>G</del> :                       | nigh temperature glass                             |  |
| EMPA           | : Swiss Federal                           | $h\nu$ :                                | Photon energy                                      |  |
|                | Laboratories for Materials                | $\hbar\Omega$ :                         | Phonon energy                                      |  |
|                | Science and Technology                    | I:                                      | Intensity                                          |  |
| EQE:           | External quantum                          | IF:                                     | Interface recombination                            |  |
| $\eta$ :       | efficiency<br>Efficiency                  | $I_{mp}$ :                              | Current at maximum<br>power point                  |  |
| Fe:            | Iron                                      | In:                                     | Indium                                             |  |
| FF:            | Fill factor                               | IQE:                                    | Internal quantum efficiency                        |  |

https://doi.org/10.51202/9783186396099-I Generiert durch IP '18.221.140.111', am 17.05.2024, 15:37:41. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

| I-V:                                     | Current-voltage                                                       | $J_{tot}$ :       | Total current density                   |
|------------------------------------------|-----------------------------------------------------------------------|-------------------|-----------------------------------------|
| IXRD:                                    | In-situ X-ray diffraction                                             | K:                | Pottasium                               |
| i-ZnO:                                   | Intrinsic ZnO                                                         | $k_B$ :           | Boltzmann constant                      |
| J:                                       | Current density                                                       | $k_e$ :           | Extinction coefficient                  |
| $J_0$ :                                  | Reverse saturation current                                            | <b><i>k</i></b> : | Scattering vector                       |
| 0.01                                     | lensity                                                               | $L_{lpha}$ :      | Absorption length                       |
| $J_{bb}$ :                               | Photo current density,                                                | $L_n$ :           | Electron diffusion length               |
|                                          | produced by black body                                                | $L_p$ :           | Hole diffusion length                   |
|                                          | radiation                                                             | M:                | Diffusion coefficient                   |
| JCPDS                                    | S: Joint Committee on<br>Powder Diffraction                           | mc-Si:            | Multicrystalline silicon                |
|                                          | Standards                                                             | MoN:              | Molybdenum nitride                      |
| $J_{dark}$ :                             | Dark current density                                                  | $MoS_2$ :         | Molybdenum disulfide                    |
| $J_{atom}$ :                             | Material flux                                                         | $MoSe_2$ :        | Molybdenum diselenide                   |
| $J_{ph}$ :                               | er Photo current density,                                             |                   | 2: Molybdenum<br>disulfoselenide        |
|                                          | absorbed photons                                                      | $\overline{n}$ :  | Complex refractive index                |
| $J_{rec}$ :                              | Recombination current density                                         | $n_r$ :           | Refractive index                        |
|                                          |                                                                       | Na:               | Sodium                                  |
| $J_{sc}$ :                               | Short-circuit current                                                 | $N_A$ :           | Acceptor density                        |
|                                          | density                                                               | abla:             | Gradient                                |
| $J^{grad}_{sc}$ :                        | Short-circuit current<br>density calculated by<br>analytical approach | $N_C$ :           | DOS in the CB                           |
|                                          |                                                                       | $N_D$ :           | Donor density                           |
| $J_{sc}^{SCAPS}$ : Short-circuit current |                                                                       | $n_{id}$ :        | Diode ideality factor                   |
|                                          | density calculated by<br>SCAPS simulations                            | NREL:             | National Renewable<br>Energy Laboratory |

| $N_V$ :        | DOS in the VB                                  | $R_p$ :                                    | Parallel resistance                           |
|----------------|------------------------------------------------|--------------------------------------------|-----------------------------------------------|
| n-ZnO:         | n-doped ZnO                                    | $R_s$ :                                    | Series resistance                             |
| $\Delta n$ :   | Excess charge carrier                          | RTP:                                       | Rapid thermal processing                      |
| ODC:           | density (electrons)<br>Ordered defect compound | S/meta                                     | <b>d:</b> S/(Cu+Ga+In)<br>concentration ratio |
| PL:            | Photoluminescence                              | S:                                         | Sulfur                                        |
| $P_{mp}$ :     | Maximum electrical power                       | SCAPS: Solar Cell Capacitance<br>Simulator |                                               |
| $P_{opt}$ :    | Power of incoming photons                      | SCR:                                       | Space charge region                           |
| $\Psi$ :       | Electrostatic potential                        | Se/met                                     | tal: Se/(Cu+Ga+In)                            |
| p-Si:          | Polycrystalline silicon                        | ,                                          | concentration ratio                           |
| PV:            | Photovoltaics                                  | Se:                                        | Selenium                                      |
| $\phi_{sun}$ : | Photon flux from the sun                       | SEL:                                       | Stacked elemental layer                       |
| $\phi(V,E)$ :  | Emitted photon flux,                           | SEM:                                       | Scanning electron                             |
|                | energy                                         | SFG:                                       | Standard float glass                          |
| $\Delta p$ :   | Excess charge carrier density (holes)          | SIMS:                                      | Secondary ion mass<br>spectroscopy            |
| Q:             | Material quantity                              | SQ:                                        | Shockley-Queisser                             |
| QNR:           | Quasi neutral region                           | SRH:                                       | Shockley-Read-Hall                            |
| R:             | Recombination current                          | SSSe:                                      | S/(S+Se) concentration                        |
| ho:            | Charge distribution                            |                                            | ratio                                         |
| $R_h$ :        | Hole recombination rate                        | <i>T</i> :                                 | Temperature                                   |
| $R_n$ :        | Electron recombination                         | Te:                                        | Tellurium                                     |
|                | rate                                           | $T_S$ :                                    | Sulfurization temperature                     |

https://doi.org/10.51202/9783186396099-I Generiert durch IP '18.221.140.111', am 17.05.2024, 15:37:41. Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig.

| $\mu_n$ :Electron mobility $\phi_n$ :One electron wave function $\mu_p$ :Hole mobility $W_p$ :Watt peakVB:Valence band $RRD$ :X-ray diffraction $V_D$ :Built-in potential $RRF$ :X-ray fluorescence $v_e$ :Recombination velocity for<br>electronsZn:Zinc $V_{eff}$ :Effective potentialZSW:Centre for Solar Energy<br>and Hydrogen Research<br>Baden-Wuerttemberg $v_{mp}$ :Voltage at maximum<br>power pointZSW:Since for Solar Energy<br>and Hydrogen Research<br>Baden-Wuerttemberg | $T_{Se}$ :  | Selenization temperature             | $V_{oc}$ : | Open-circuit voltage                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------|------------|--------------------------------------------------|
| $\mu_p$ :Hole mobility $W_p$ :Watt peakVB:Valence bandXRD:X-ray diffraction $V_D$ :Built-in potential $Arref:$ X-ray fluorescence $v_e$ :Recombination velocity for<br>electronsZn:Zinc $V_{eff}$ :Effective potentialZnS:Zinc blende $v_{np}$ :Recombination velocity for<br>holesZSW:Centre for Solar Energy<br>ad Hydrogen Research<br>Baden-Wuerttemberg                                                                                                                            | $\mu_n$ :   | Electron mobility                    | $\phi_n$ : | One electron wave function                       |
| VB:Valence bandXRD:X-ray diffractionV_D:Built-in potentialRRF:X-ray fluorescenceve:Recombination velocity for<br>electronsZn:ZincVeff:Effective potentialZnS:Zinc blendevh:Recombination velocity for<br>holesZSW:Centre for Solar Energy<br>and Hydrogen Research<br>Baden-WuerttembergVmp:Voltage at maximum<br>power pointVerticeVertice                                                                                                                                             | $\mu_p$ :   | Hole mobility                        | $W_p$ :    | Watt peak                                        |
| VD:Built-in potentialXRF:X-ray fluorescenceve:Recombination velocity for<br>electronsZn:ZincVeff:Effective potentialZnS:Zinc blendevh:Recombination velocity for<br>holesZSW:Centre for Solar Energy<br>and Hydrogen Research<br>Baden-WuerttembergVmp:Voltage at maximum<br>power pointEffective pointEffective point                                                                                                                                                                  | VB:         | Valence band                         | XRD:       | X-ray diffraction                                |
| ve:Recombination velocity for<br>electronsZn:ZincVeff:Effective potentialZnS:Zinc blendevh:Recombination velocity for<br>holesZSW:Centre for Solar Energy<br>and Hydrogen Research<br>Baden-WuerttembergVmp:Voltage at maximum<br>power pointEffective point                                                                                                                                                                                                                            | $V_D$ :     | Built-in potential                   | XRF:       | X-ray fluorescence                               |
| Veff:Effective potentialZnS:Zinc blendevh:Recombination velocity for<br>holesZSW:Centre for Solar Energy<br>and Hydrogen Research<br>Baden-WuerttembergVmp:Voltage at maximum<br>power pointEden-Wuerttemberg                                                                                                                                                                                                                                                                           | $v_e$ :     | Recombination velocity for electrons | Zn:        | Zinc                                             |
| $v_h$ : Recombination velocity for <b>ZSW</b> : Centre for Solar Energy<br>holes and Hydrogen Research<br>$V_{mp}$ : Voltage at maximum<br>power point power point                                                                                                                                                                                                                                                                                                                      | $V_{eff}$ : | Effective potential                  | ZnS:       | Zinc blende                                      |
| $V_{mp}$ : Voltage at maximum power point Baden-Wuerttemberg                                                                                                                                                                                                                                                                                                                                                                                                                            | $v_h$ :     | Recombination velocity for holes     | ZSW:       | Centre for Solar Energy<br>and Hydrogen Research |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $V_{mp}$ :  | Voltage at maximum<br>power point    |            | Baden-Wuerttemberg                               |

### Abstract

The aim of this work is to optimize the absorber for  $Cu(In,Ga)(S,Se)_2$ thin film photovoltaic cells in order to get a higher efficiency of the energy conversion in the framework of a well-established industrial process. In general the industrial process belongs to the family of two-step processes which consist of sputtering and evaporating a stack of elemental layers and subsequent annealing in order to form the chalcopyrite structure of the absorber. The two-step process stays in competition with the more flexible co-evaporation process, which up to now has delivered the best laboratory cells reaching efficiencies up to 22.6%. The motivation for the two-step process may also be derived from the achievement of the best module conversion efficiencies of almost 18%. The Shockley-Queisser limit of single junction solar cells is around 33%. The difference of 11%to the best laboratory cells can be explained by optical reflection and internal recombination losses (Auger and Shockley-Read-Hall) and is mostly reflected in open-circuit voltage losses. In order to achieve higher opencircuit voltages, conduction band V-profiles are introduced in order to reduce space-charge region and interface (buffer) recombination as well as back contact recombination. Band gap grading is most easily achieved in the co-evaporation process. Due to the fact that the stacked elemental layer process is driven by interdiffusion of elements and compounds the precise control of these V-profiles is a challenge and alternative ways to control the band gap profile need to be found. To adapt the electronic band structure to the back electrode and the transparent window via a buffer layer, a certain gradient of Ga and S in the absorber is needed. In this work, optimized temperature profiles, optimal chalcogen amounts and a modified back contact have been identified as possible parameters for improvement of solar cell performance. In the field of band gap grading in Cu(In,Ga)Se<sub>2</sub> thin films a method was found to control the Ga/(Ga+In) profiles by the process temperature and the Se amount. This allows to optimize band gap profiles in the p-n junction solar cell with respect to more efficient charge carrier collection. With the help of numerical SCAPS simulations the optimized parameters of back and front surface grading properties can be calculated for the application in optimal process conditions. For the adjustment of S/(S+Se) profiles in  $Cu(In,Ga)(S,Se)_2$  thin films, defined concentration gradients were established by applying chalcogens with a specific ratio before the annealing process. The conventional two-step process was furthermore modified by separating the annealing step into a pure selenization and a sulfurization phase in order to better adjust the S/(S+Se) profile. A large parameter field makes a detailed study of post sulfur diffusion processes possible. However, to adjust the chalcogen profile in the thin film it was found that the most important parameters are the sulfurization temperature and the sulfurization time in step two. Furthermore, a Mo-N layer was introduced as a novel barrier layer against chalcogen diffusion to the Mo back contact. A self-limited MoSe<sub>2</sub> layer growth on top of the Mo-N barrier layer with a defined thickness has been found, which does not hinder charge carrier collection at the back contact and additionally ensures a quasi-ohmic contact.