# Fortschritt-Berichte VDI

# VDI

Reihe 21 Elektrotechnik

Dipl.-Ing. Christian Bödeker, Bremen

Nr. 419

Extrinsische und intrinsische Beeinflussungen des Verhaltens von Siliziumkarbid-Leistungshalbleiterbauelementen

> Berichte des Instituts für elektrische Antriebe, Leistungselektronik und Bauelemente der Universität Bremen

Das Erste

https://doi.org/10.51202/9783186419217-1 Generiert durch IP '18.222.119.227', am 04.05.2024, 20:59:29. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

# Extrinsische und intrinsische Beeinflussungen des Verhaltens von Siliziumkarbid-Leistungshalbleiterbauelementen

Vom Fachbereich für Physik und Elektrotechnik der Universität Bremen

zur Erlangung des akademischen Grades eines

## Doktor-Ingenieur (Dr.-Ing.)

genehmigte Dissertation

von

Dipl.-Ing. Christian Bödeker

aus Bremen

Referent: Korreferent: Prof. Dr.-Ing. Nando Kaminski Prof. Dr.-Ing. Josef Lutz

Eingereicht am: Tag des Promotionskolloquiums:

09.03.2018 18.09.2018

https://doi.org/10.51202/9783186419217-I Generiert durch IP '18.222.119.227', am 04.05.2024, 20:59:29. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

https://doi.org/10.51202/9783186419217-1 Generiert durch IP '18.222.119.227', am 04.05.2024, 20:59:29. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

# Fortschritt-Berichte VDI

Reihe 21

Elektrotechnik

Dipl.-Ing. Christian Bödeker, Bremen

Nr. 419

Extrinsische und intrinsische Beeinflussungen des Verhaltens von Siliziumkarbid-Leistungshalbleiterbauelementen



Berichte des Instituts für elektrische Antriebe, Leistungselektronik und Bauelemente der Universität Bremen

#### Bödeker, Christian Extrinsische und intrinsische Beeinflussungen des Verhaltens von Siliziumkarbid-Leistungshalbleiterbauelementen

Fortschr.-Ber. VDI Reihe 21 Nr. 419. Düsseldorf: VDI Verlag 2019. 184 Seiten, 179 Bilder, 18 Tabellen. ISBN 978-3-18-341921-0, ISSN 0178-9481, € 67,00/VDI-Mitgliederpreis € 60,30.

**Für die Dokumentation:** Siliziumkarbid – parasitäre Elemente – Streuinduktivität – Messwiderstand – thermische Stabilität – statisches und dynamisches Verhalten – Halbleitergehäuse – Kelvin-Source-Anschluss – Kurzschlussverhalten – Überspannungsschutz

Die vorliegende Arbeit beschäftigt sich mit dem Verhalten von Halbleitern aus Siliziumkarbid (SiC). Zunächst werden die Auswirkungen par. Elemente betrachtet. Es wird u.a. der planare M-Shunt untersucht. Die Charakterisierung der Halbleiter wird mit stat. und dyn. Messmethoden durchgeführt. Der Sperrbetrieb der Dioden wird im Hinblick auf therm. Stabilität untersucht und bei der dyn. Charakterisierung werden die Überspannung sowie die Ladung bestimmt. Bei den stat. Messungen der Transistoren wird das Verhalten hinsichtlich verschiedener Transistorren umfasst eine Analyse des Einflusses der Ansteuerparameter, der Gehäuse, der Sperrschichttemperatur und unterschiedlicher Dioden auf das Schaltverhalten. Des Weiteren werden die Zerstörungsgrenzen von SiC-MOSFETs und die Anwendbarkeit von Überspannungsschutzbeschaltungen auf SiC-MOSFETs analysiert.

#### Bibliographische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet unter www.dnb.de abrufbar.

#### Bibliographic information published by the Deutsche Bibliothek

(German National Library) The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie (German National Bibliography); detailed bibliographic data is available via Internet at www.dnb.de.

Dissertation Universität Bremen

© VDI Verlag GmbH · Düsseldorf 2019

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe (Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung, vorbehalten.

Als Manuskript gedruckt, Printed in Germany. ISSN 0178-9481 ISBN 978-3-18-341921-0

> https://doi.org/10.51202/9783186419217-I Generiert durch IP '18.222.119.227', am 04.05.2024, 20:59:29. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig.

https://doi.org/10.51202/9783186419217-1 Generiert durch IP '18.222.119.227', am 04.05.2024, 20:59:29. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig Verlags-Innentitel (gestaltet vom Verlag)

Impressumseite (gestaltet vom Verlag)

#### Vorwort

Die Grundlage für die vorliegende Arbeit wurde im Rahmen meiner Anstellung am Institut für elektrische Antriebe, Leistungselektronik und Bauelemente (IALB) der Universität Bremen im Zeitraum zwischen September 2010 und November 2017 gelegt. Die Tätigkeit am IALB hat mir die Gelegenheit gegeben, Forschungsergebnisse zu erzielen, welche in eine Vielzahl an Veröffentlichungen und darüber hinaus auch in diese Arbeit eingegangen sind. Hierbei hat die Arbeit unter anderem Unterstützung vom European Center for Power Electronics e. V. (ECPE) im Zusammenhang mit dem Projekt "Current Measurement with Low-inductive Planar Shunts" erfahren, das im Rahmen des "ECPE Joint Research Programme" gefördert wurde. Einige der Veröffentlichungen sind durch Kooperationen mit Industriepartnern beziehungsweise der Unterstützung von Firmen entstanden. Hierbei ist im Speziellen Dr. Jeffrey B. Cassidy, Edgar Ayerbe und Cam Pham von Wolfspeed, Dr. Ranbir Singh von GeneSiC, Dr. Martin Domeij von ON Semiconductor sowie der Firma Isabellenhütte Heusler ein Dank für die Versorgung mit Materialien und auch Informationen auszusprechen.

Bei meinem Doktorvater Herrn Prof. Dr.-Ing. Nando Kaminski sowie Herrn Prof. Dr.-Ing. Josef Lutz möchte ich mich für die Übernahme der Gutachten zu dieser Arbeit bedanken. Des Weiteren gilt mein Dank Herrn Prof. Dr.-Ing. Nando Kaminski, Herrn Prof. Dr. phil. nat. Dieter Silber und natürlich allen Kolleginnen und Kollegen beider Arbeitsgruppen des IALBs für die vielen hilfreichen und wertvollen Diskussionen. Insbesondere sind diesbezüglich Melanie Adelmund, Alexander Würfel, Michael Hanf, Matthias Joost und Jacek Borecki hervorzuheben. Ferner sei Dr.-Ing. Tobias Appel (ehemals Universität Rostock) für einige hilfreiche Hinweise gedankt.

Die zahlreichen betreuten studentischen Arbeitsvorhaben an der Universität Bremen haben selbstverständlich auch zur vorliegenden Arbeit beigetragen. Hierfür danke ich allen von mir betreuten Studentinnen und Studenten recht herzlich. Ebenfalls möchte ich mich bei allen Studenten bedanken, die im Rahmen einer Anstellung als Hilfskraft beigetragen haben.

Ein weiterer großer Dank gilt Elke Krüger, Melanie Adelmund, Michael Hanf und Alexander Würfel für die Durchsicht der Rohfassung der Arbeit auf Fehler.

Zu guter Letzt möchte ich meinen Eltern ganz herzlich für die jahrelange Unterstützung während des Studiums und der anschließenden Zeit der Promotion danken.

# Inhalt

| V  | orwor              | t      |                                                                      | III  |
|----|--------------------|--------|----------------------------------------------------------------------|------|
| In | halt               |        |                                                                      | V    |
| Fo | ormelz             | eiche  | en und Abkürzungen                                                   | VII  |
| K  | urzfass            | sung.  |                                                                      | XIII |
| A  | bstrac             | t      |                                                                      | XIV  |
| 1  | Ein                | leitu  | ng                                                                   | 1    |
| 2  | Gr                 | undla  | gen der Siliziumkarbid-Bauelemente                                   | 3    |
|    | 2.1                | Mat    | terialeigenschaften                                                  | 3    |
|    | 2.2                | Siliz  | iumkarbid-Bauelemente                                                | 5    |
|    | 2.2                | .1     | pin-Diode                                                            | 5    |
|    | 2.2                | .2     | Schottky-Diode                                                       | 6    |
|    | 2.2                | .3     | Bipolartransistor (BJT)                                              | 8    |
|    | 2.2                | .4     | Sperrschichtfeldeffekttransistor (JFET)                              | 11   |
|    | 2.2                | .5     | Metall-Oxid-Halbleiter-Feldeffekttransistor (MOSFET)                 | 14   |
|    | 2.3                | Para   | asitäre Elemente                                                     | 17   |
| 3  | Me                 | essted | chnik                                                                | 21   |
|    | 3.1 Schaltversuche |        | altversuche                                                          | 21   |
|    | 3.1                | .1     | Doppelpulsversuch                                                    | 22   |
|    | 3.1                | 2      | Kurzschlussversuch                                                   | 24   |
|    | 3.1                | .3     | Messplatzkonzept                                                     | 25   |
|    | 3.1                | 4      | Schaltverläufe und deren Auswertung                                  | 27   |
|    | 3.2                | Stro   | ommessung über einen Widerstand                                      | 31   |
|    | 3.2                | .1     | Koaxialer Messwiderstand (Koaxialshunt)                              | 35   |
|    | 3.2                | .2     | Hair-pin-Shunt                                                       | 40   |
|    | 3.2                | .3     | M-Shunt                                                              | 43   |
|    | 3.2                | .4     | PCB-M-Shunt                                                          | 47   |
|    | 3.2                | .5     | Messwiderstände im Überblick                                         | 48   |
|    | 3.3                | Last   | induktivitäten für Messaufbauten                                     | 49   |
| 4  | Spe                | err- u | nd Schaltverhalten von Dioden                                        | 53   |
|    | 4.1                | The    | rmische Stabilität von 0,6 kV bis 1,7 kV Dioden im Sperrbetrieb      | 53   |
|    | 4.1                | .1     | Selbsterwärmung und thermisches Weglaufen                            | 53   |
|    | 4.1                | .2     | Leckströme                                                           | 55   |
|    | 4.1                | .3     | Ermittlung der Verdopplungstemperaturdifferenzen der Leckströme      | 61   |
|    | 4.1                | .4     | Anwendung des Stabilitätskriteriums                                  | 67   |
|    | 4.1                | .5     | Lawinendurchbruch in SiC im Vergleich mit Silizium und Galliumnitrid | 69   |

|          | 4.2 | 2                                     | Sch                                            | altverhalten von 1,2 kV Dioden                                                             | 71  |
|----------|-----|---------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------|-----|
|          | 4   | 4.2.1                                 | 1                                              | Einschaltverhalten                                                                         | 74  |
|          | 4   | 4.2.2                                 | 2                                              | Ausschaltverhalten                                                                         | 77  |
| 5 D      |     | Dur                                   | urchlass- und Schaltverhalten von Transistoren |                                                                                            | 82  |
|          | 5.1 |                                       | 1,2                                            | kV BJT                                                                                     | 83  |
|          | !   | 5.1.1                                 | 1                                              | Durchlassverhalten                                                                         | 83  |
|          | !   | 5.1.2                                 | 2                                              | Schaltverhalten                                                                            | 84  |
|          | 5.2 | 2                                     | 1,2                                            | kV JFET                                                                                    | 87  |
|          | 5.3 |                                       | 1,2                                            | kV MOSFET                                                                                  | 89  |
|          | !   | 5.3.1                                 | 1                                              | Durchlassverhalten                                                                         | 89  |
|          | Į   | 5.3.2                                 | 2                                              | Schaltverhalten                                                                            | 94  |
|          | 5.4 | Ļ                                     | 3,3                                            | kV MOSFET                                                                                  | 114 |
|          | !   | 5.4.1                                 | 1                                              | Durchlassverhalten                                                                         | 115 |
|          | Į   | 5.4.2                                 | 2                                              | Schaltverhalten                                                                            | 116 |
|          | 5.5 | 5 Zerstörungsgrenzen beim Kurzschluss |                                                | 117                                                                                        |     |
|          | 5.6 | ;<br>;                                | Übe                                            | erspannungsschutz                                                                          | 126 |
|          | Į   | 5.6.1                                 | 1                                              | Active Clamping                                                                            | 128 |
|          | Į   | 5.6.2                                 |                                                | Dynamic Voltage Rise Control                                                               | 129 |
|          | !   | 5.6.3                                 | 3                                              | Dynamic Active Clamping                                                                    | 133 |
| 6        | 2   | Zusa                                  | amn                                            | nenfassung                                                                                 | 138 |
| 7 Anhang |     |                                       | 141                                            |                                                                                            |     |
|          | 7.1 |                                       | Dar                                            | stellung des Messplatzes                                                                   | 141 |
|          | 7.2 | 2                                     | Wic                                            | htige Komponenten zur Durchführung der Schaltversuche                                      | 142 |
|          | 7.3 | 5                                     | Dar                                            | stellung der Messplatinen für vergleichende Messungen                                      | 143 |
|          | 7.4 | Ļ                                     | Tec                                            | hnische Zeichnung des erstellten Simulationsmodells vom Koaxialshunt                       | 144 |
|          | 7.5 | ;                                     | SiC-                                           | BJT: Schaltgeschwindigkeiten in Abhängigkeit von Ic und TJ                                 | 145 |
|          | 7.6 | ;                                     | SiC-                                           | MOSFET: Schaltverläufe in Abhängigkeit von C <sub>GS,ext</sub>                             | 146 |
|          | 7.7 | ,                                     | SiC-                                           | MOSFET: Schaltgeschwindigkeiten in Abhängigkeit von C <sub>GS,ext</sub> und T <sub>J</sub> | 147 |
|          | 7.8 | 8                                     | SiC-                                           | MOSFET: Simulationsmodell                                                                  | 148 |
| 8        | I   | Lite                                  | ratu                                           | rverzeichnis                                                                               | 149 |
|          | 8.1 |                                       | Facl                                           | hliteratur                                                                                 | 149 |
|          | 8.2 | 2                                     | Dat                                            | enblätter und Bedienungsanleitungen                                                        | 160 |
|          | 8.3 | ;                                     | Beti                                           | reute studentische Arbeitsvorhaben                                                         | 164 |
|          |     |                                       |                                                |                                                                                            |     |

| Formelzeichen/      | Podoutung                                      |  |  |
|---------------------|------------------------------------------------|--|--|
| Abkürzung           | beneartaing                                    |  |  |
| A                   | Chipdicke                                      |  |  |
| A <sup>*</sup>      | Richardson-Konstante                           |  |  |
| A <sub>aktiv</sub>  | Aktive Fläche des Chips                        |  |  |
| AC                  | Active Clamping                                |  |  |
| A <sub>Chip</sub>   | Gesamtfläche eines Chips                       |  |  |
| A <sub>Diode</sub>  | aktive Fläche der Diode                        |  |  |
| A <sub>Spule</sub>  | Fläche einer Spule                             |  |  |
| В                   | Stromverstärkung                               |  |  |
| b                   | Breite                                         |  |  |
| BJT                 | Bipolar Junction Transistor, Bipolartransistor |  |  |
| BV                  | Breakdown Voltage, Durchbruchspannung          |  |  |
| С                   | Kapazität                                      |  |  |
| C <sub>DC</sub>     | Zwischenkreiskapazität                         |  |  |
| C <sub>DS</sub>     | Drain-Source-Kapazität                         |  |  |
| C <sub>GD</sub>     | Gate-Drain-Kapazität, Miller-Kapazität         |  |  |
| C <sub>GS</sub>     | Gate-Source-Kapazität                          |  |  |
| C <sub>GS,ext</sub> | externe Gate-Source-Kapazität                  |  |  |
| C <sub>iss</sub>    | Eingangskapazität eines MOSFETs                |  |  |
| C                   | Sperrschichtkapazität                          |  |  |
| C <sub>komp</sub>   | Kapazität des Kompensationsnetzwerks           |  |  |
| Ckoppel             | Koppelkapazität                                |  |  |
| C <sub>L,par</sub>  | parasitäre Induktivität der Lastinduktivität   |  |  |
| Coss                | Ausgangskapazität des MOSFETs                  |  |  |
| Cox                 | Oxid-Kapazität                                 |  |  |
| Cs                  | Speed-Up-Kondensator                           |  |  |
| C <sub>th</sub>     | spezifische Wärmekapazität                     |  |  |
| C <sub>th</sub>     | Wärmekapazität, thermische Kapazität           |  |  |
| Cσ                  | parasitäre Kapazität                           |  |  |
| d                   | Dicke, Schichtdicke                            |  |  |
| d <sub>Chip</sub>   | Chipdicke                                      |  |  |
| $d_{Epitaxie}$      | Epitaxieschichtdicke                           |  |  |
| $d_{Wafer}$         | Wafer-Dicke                                    |  |  |
| D                   | Diode                                          |  |  |
| DAC                 | Dynamic Active Clamping                        |  |  |
| D <sub>F</sub>      | Freilaufdiode                                  |  |  |
| Dp                  | Diffusionskoeffizient von Löchern              |  |  |
| D <sub>Spule</sub>  | Durchmesser einer Spule                        |  |  |
| DVRC                | Dynamic Voltage Rise Control                   |  |  |
| E                   | elektrische Feldstärke                         |  |  |

## Formelzeichen und Abkürzungen

| E                                   | Energie, Schaltenergie                                                 |
|-------------------------------------|------------------------------------------------------------------------|
| E <sub>aus</sub>                    | Ausschaltenergie                                                       |
| E <sub>Chip</sub>                   | in einen Chip eingebrachte Energie                                     |
| E <sub>ein</sub>                    | Einschaltenergie                                                       |
| E <sub>Epitaxie</sub>               | in die Epitaxieschicht eines Chips eingebrachte Energie                |
| Eges                                | Gesamtenergie                                                          |
| E <sub>krit</sub>                   | kritische elektrische Feldstärke                                       |
| ECPE                                | European Center for Power Electronics e. V.                            |
| f                                   | Frequenz                                                               |
| f <sub>Mess</sub>                   | Messfrequenz                                                           |
| f <sub>N</sub>                      | Faktor für Spuleninduktivität                                          |
| f <sub>res,Spule</sub>              | Resonanzfrequenz einer Spule, Resonanzfrequenz einer Lastinduktivität  |
| f <sub>Signal</sub>                 | Signalfrequenz                                                         |
| g <sub>fs</sub>                     | Transkonduktanz                                                        |
| н                                   | magnetische Feldstärke                                                 |
| h                                   | Plancksches Wirkungsquantum                                            |
| h <sub>FE</sub>                     | Stromverstärkung                                                       |
| HP-Shunt                            | Hair-pin-Shunt                                                         |
| i                                   | intrinsisches Halbleitergebiet                                         |
| l, i                                | Strom                                                                  |
| IALB                                | Institut für elektrische Antriebe, Leistungselektronik und Bauelemente |
| I <sub>B</sub> , i <sub>B</sub>     | Basisstrom                                                             |
| l <sub>c</sub> , i <sub>c</sub>     | Kollektorstrom                                                         |
| l <sub>cσ</sub> , i <sub>cσ</sub>   | Strom durch Kapazität                                                  |
| I <sub>D</sub> , i <sub>D</sub>     | Drain-Strom                                                            |
| i <sub>D,Leck</sub>                 | Drain-Source-Leckstrom                                                 |
| I <sub>DSC</sub> , i <sub>DSC</sub> | Drain-Strom im Kurzschlussfall                                         |
| IDSC,max, IDSC,max                  | maximaler Drain-Strom im Kurzschlussfall                               |
| I <sub>E</sub> , i <sub>E</sub>     | Emitterstrom                                                           |
| I <sub>F</sub> , İ <sub>F</sub>     | Strom durch Freilaufdiode                                              |
| l <sub>G</sub> , i <sub>G</sub>     | Gate-Strom                                                             |
| İ <sub>G,Leck</sub>                 | Gate-Leckstrom                                                         |
| IGBT                                | Insulated Gate Bipolar Transistor                                      |
| İ <sub>komp</sub>                   | Strom durch ein Kompensationsnetzwerk                                  |
| IL, IL                              | Strom durch Lastinduktivität                                           |
| I <sub>Nenn</sub>                   | Nennstrom                                                              |
| I <sub>R</sub>                      | Leckstrom                                                              |
| I <sub>Referenz</sub>               | Strom eines Referenzshunts                                             |
| İ <sub>RR</sub>                     | Rückstrom                                                              |
| I <sub>RRM</sub>                    | Rückstromspitze                                                        |
| ls, is                              | Source-Strom                                                           |
| I <sub>sc</sub> , i <sub>sc</sub>   | Kurzschlussstrom                                                       |
| İ <sub>Shunt</sub>                  | Shuntstrom                                                             |

| Test                               | Teststrom                                                                          |
|------------------------------------|------------------------------------------------------------------------------------|
| J, j                               | Stromdichte                                                                        |
| JFET                               | Junction Field Effekt Transistor, Sperrschichtfeldeffekttransistor                 |
| J <sub>F</sub> , j <sub>F</sub>    | Stromdichte im Durchlassbetrieb einer Diode                                        |
| J <sub>Generation</sub>            | Generationsleckstromdichte                                                         |
| J <sub>R</sub> , j <sub>R</sub>    | Leckstromdichte                                                                    |
| Js                                 | Diffusionsleckstromdichte                                                          |
| J <sub>TFE</sub>                   | Leckstrom durch thermionische Feldemission                                         |
| kв                                 | Boltzmann-Konstante                                                                |
| K <sub>XY</sub>                    | Koppelfaktor der Induktivitäten $L_x$ und $L_y$ mit der Gegeninduktivität $M_{XY}$ |
| I                                  | Länge                                                                              |
| L <sub>Kanal</sub>                 | Kanallänge                                                                         |
| I <sub>Spule</sub>                 | Länge der Spule                                                                    |
| L                                  | Induktivität                                                                       |
| Lª                                 | äußere Induktivität zwischen zwei Leitern (koaxiale Anordnung)                     |
| L <sub>B</sub>                     | Basis-Induktivität                                                                 |
| Lc                                 | Kollektor-Induktivität                                                             |
| L <sub>D</sub>                     | Drain-Induktivität                                                                 |
| LE                                 | Emitter-Induktivität                                                               |
| L <sub>G</sub>                     | Gate-Induktivität                                                                  |
| L <sup>i</sup> a                   | innere Induktivität eines äußeren Leiters (koaxiale Anordnung)                     |
| L <sup>i</sup> i                   | innere Induktivität eines Leiters (koaxiale Anordnung)                             |
| L <sup>i</sup> i,hohl              | innere Induktivität eines inneren hohlen Leiters (koaxiale Anordnung)              |
| L <sup>i</sup> i,massiv            | innere Induktivität eines inneren massiven Leiters (koaxiale Anordnung)            |
| L <sub>KS</sub>                    | Kelvin-Source-Induktivität                                                         |
| L                                  | Lastinduktivität, Lastspule                                                        |
| L <sub>Mess</sub>                  | Induktivität des Messkreises                                                       |
| Ls                                 | Source-Induktivität                                                                |
| L <sub>Shunt</sub>                 | Induktivität eines Shunts, Streuinduktivität eines Shunts                          |
| L <sub>Shunt,ber</sub>             | berechnete Induktivität eines Shunts                                               |
| $L_{Shunt,ideal}$                  | ideale Induktivität eines Shunts                                                   |
| L <sub>Shunt,sim</sub>             | simulierte Induktivität eines Shunts                                               |
| Lσ                                 | parasitäre Induktivität, Streuinduktivität                                         |
| $L_{\sigma,Diode}$                 | Induktivität zwischen Dioden-Chip und Gehäuseanschlüssen                           |
| Μ                                  | Metall-Oxid-Halbleiter-Feldeffekttransistor                                        |
| m                                  | Masse                                                                              |
| m                                  | effektive Elektronenmasse                                                          |
| m <sub>0</sub>                     | Elektronenmasse                                                                    |
| m <sub>Chip</sub>                  | Chipmasse                                                                          |
| M <sub>Mess</sub>                  | Gegeninduktivität des Messkreises                                                  |
| MOSFET                             | Metall-Oxid-Halbleiter-Feldeffekttransistor                                        |
| n                                  | Anzahl der Messpunkte zur Filterung mittels gleitender Mittelwertbildung           |
| n, n <sup>-</sup> , n <sup>+</sup> | n-dotiertes Halbleitergebiet                                                       |

| ND                                 | Dichte der Donatoren                                                       |
|------------------------------------|----------------------------------------------------------------------------|
| n <sub>i</sub>                     | intrinsische Ladungsträgerdichte                                           |
| n <sub>w</sub>                     | Windungszahl                                                               |
| p, p <sup>-</sup> , p <sup>+</sup> | p-dotiertes Halbleitergebiet                                               |
| PCB                                | Printed Circuit Board, Leiterplatte                                        |
| P <sub>R</sub>                     | Verlustleistung im Sperrbetrieb                                            |
| P <sub>SC</sub>                    | Verlustleistung während eines Kurzschlusses                                |
| P <sub>Shunt</sub>                 | umgesetzte Verlustleistung in einem Shunt                                  |
| Pv                                 | Verlustleistung                                                            |
| q                                  | Elementarladung                                                            |
| Q                                  | Bipolartransistor                                                          |
| Qc                                 | Sperrschichtladung                                                         |
| Q <sub>RR</sub>                    | Sperrverzögerungsladung                                                    |
| Q <sub>th</sub>                    | Wärmemenge                                                                 |
| r                                  | Radius                                                                     |
| R                                  | Widerstand                                                                 |
| R <sub>Abschluss</sub>             | Abschlusswiderstand                                                        |
| R <sub>B</sub>                     | Basis-Widerstand                                                           |
| R <sub>CE,on</sub>                 | Durchlasswiderstand eines BJTs                                             |
| r <sub>on</sub>                    | spezifischer Widerstand                                                    |
| r <sub>CE,on</sub>                 | spezifischer Durchlasswiderstand eines BJTs                                |
| r <sub>DS,on</sub>                 | spezifischer Durchlasswiderstand eines MOSFETs beziehungsweise eines JFETs |
| R <sub>DS,on</sub>                 | Durchlasswiderstand eines MOSFETs beziehungsweise eines JFETs              |
| R <sub>G</sub>                     | Gate-Widerstand                                                            |
| R <sub>G,ext</sub>                 | externer Gate-Widerstand                                                   |
| R <sub>G,int</sub>                 | interner Gate-Widerstand                                                   |
| R <sub>G,ges</sub>                 | Gesamt-Gate-Widerstand                                                     |
| R <sub>Koax</sub>                  | Widerstand eines Koaxialshunts                                             |
| R <sub>komp</sub>                  | Widerstand eines Kompensationsnetzwerks                                    |
| R <sub>Kontakt</sub>               | Kontaktwiderstand, Übergangswiderstand                                     |
| R <sub>min</sub>                   | Mindestwiderstand im Ansteuerkreis                                         |
| Rs                                 | Widerstand im Speed-Up-Zweig einer Ansteuerschaltung                       |
| R <sub>Shunt</sub>                 | Widerstand eines Shunts                                                    |
| R <sub>Shunt,Ref</sub>             | Widerstand eines Referenzshunts                                            |
| R <sub>th,JA</sub>                 | thermischer Widerstand zwischen Sperrschicht und Umgebung                  |
| SC                                 | Short Circuit, Kurzschluss                                                 |
| Si                                 | Silizium                                                                   |
| SiC                                | Siliziumkarbid                                                             |
| SLShunt                            | Standardabweichung von L <sub>Shunt</sub>                                  |
| Т                                  | Transistor                                                                 |
| Т                                  | Temperatur                                                                 |
| T <sub>A</sub>                     | Umgebungstemperatur                                                        |
| T <sub>A,0</sub>                   | Umgebungstemperatur                                                        |

| T <sub>A,krit</sub>                      | kritische Umgebungstemperatur                              |
|------------------------------------------|------------------------------------------------------------|
| Tj                                       | Sperrschichttemperatur                                     |
| T <sub>J,ini</sub>                       | initiale Sperrschichttemperatur                            |
| TC                                       | Temperaturkoeffizient                                      |
| t                                        | Zeit                                                       |
| t <sub>sc</sub>                          | Kurzschlusszeit beziehungsweise -dauer                     |
| t <sub>SC,krit</sub>                     | kritische Kurzschlusszeit beziehungsweise -dauer           |
| $t_{\Delta E}$                           | Zeitdauer, in der Energie entnommen wird                   |
| U <sub>BE</sub> , u <sub>BE</sub>        | Basis-Emitter-Spannung                                     |
| U <sub>CB</sub> , u <sub>CB</sub>        | Kollektor-Basis-Spannung                                   |
| U <sub>CE</sub> , u <sub>CE</sub>        | Kollektor-Emitter-Spannung                                 |
| U <sub>DC</sub>                          | Zwischenkreisspannung                                      |
| U <sub>DS</sub> , u <sub>DS</sub>        | Drain-Source-Spannung                                      |
| U <sub>DS,ein</sub>                      | Drain-Source-Spannung im Durchlassfall                     |
| UFRM                                     | Durchlassverzögerungsspannung                              |
| U <sub>GKS</sub>                         | Gate-Kelvin-Source-Spannung                                |
| U <sub>GS</sub> , u <sub>GS</sub>        | Gate-Source-Spannung                                       |
| U <sub>GS,Miller</sub>                   | Spannung des Miller-Plateaus                               |
| U <sub>komp</sub> , u <sub>komp</sub>    | kompensiertes Spannungssignal                              |
| UKontakt                                 | Kontaktspannung                                            |
| Ukorrigiert                              | korrigiertes Spannungssignal                               |
| uL                                       | induktiver Spannungsanteil im Messsignal                   |
| $U_{L\sigma}$ , $u_{L\sigma}$            | Überspannung an Induktivität                               |
| Uq                                       | Quellenspannung                                            |
| U <sub>Q,erhöht</sub>                    | erhöhte Quellenspannung                                    |
| UR                                       | ohmscher Spannungsanteil im Messsignal                     |
| U <sub>R</sub>                           | Sperrspannung                                              |
| U <sub>R,max</sub>                       | maximale Sperrspannung beziehungsweise Sperrfähigkeit      |
| US                                       | Spannung an der Induktivität Ls                            |
| UShunt                                   | Spannung am Shunt, Messspannung am Shunt                   |
| U <sub>Signal</sub>                      | Signalspannung                                             |
| U <sub>th</sub>                          | Schwellenspannung                                          |
| $U_{\text{Treiber}}, u_{\text{Treiber}}$ | Treiberspannung                                            |
| $u_{\sigma,Diode}$                       | von $L_{\sigma,Diode}$ bedingte Spannung                   |
| V <sub>Chip</sub>                        | Chipvolumen                                                |
| V <sub>sat</sub>                         | Sättigungsgeschwindigkeit                                  |
| W                                        | Weite                                                      |
| w                                        | Driftgebietsweite                                          |
| Wg                                       | Bandlücke                                                  |
| W <sub>RLZ</sub>                         | Weite der Raumladungszone, Weite der Sperrschicht          |
| Z                                        | Wellenwiderstand                                           |
| α                                        | Temperaturkoeffizient                                      |
| α <sub>20</sub>                          | Temperaturkoeffizient eines Widerstandsmaterials bei 20 °C |

| α                    | Transportfaktor                                   |
|----------------------|---------------------------------------------------|
| γ                    | Emitter-Effizienz                                 |
| δ                    | Eindringtiefe                                     |
| ΔΕ                   | Energiedifferenz, Energieentnahme                 |
| $\Delta E_{SC,krit}$ | Differenz zweier kritischer Kurzschlussenergien   |
| $\Delta R_{Shunt}$   | Widerstandsänderung                               |
| ΔΤ                   | Temperaturänderung                                |
| $\Delta T_d$         | Verdopplungstemperaturdifferenz                   |
| $\Delta T_{J}$       | Sperrschichttemperaturänderung                    |
| ΔU                   | Spannungsversatz                                  |
| $\Delta U_{DC}$      | Abfall der Zwischenkreisspannung                  |
| ε                    | Dielektrizitätskonstante                          |
| ε <sub>R</sub>       | relative Permittivität                            |
| Θ                    | Durchflutung                                      |
| λ                    | Wärmeleitfähigkeit                                |
| μ                    | Permeabilität                                     |
| μ <sub>0</sub>       | Permeabilitätskonstante                           |
| μ <sub>r</sub>       | relative Permeabilität                            |
| μn                   | Elektronenbeweglichkeit                           |
| μ <sup>*</sup>       | Elektronenbeweglichkeit im Kanal                  |
| $\mu_p$              | Löcherbeweglichkeit                               |
| ρ                    | spezifischer elektrischer Widerstand              |
| ρ                    | Dichte eines Materials                            |
| ρ <sub>20</sub>      | spezifischer Widerstand eines Materials bei 20 °C |
| σ                    | Leitfähigkeit                                     |
| τ <sub>g</sub>       | Generationsträgerlebensdauer                      |
| τ <sub>p</sub>       | Lebensdauer der Löcher                            |
| φв                   | Barrierenhöhe                                     |
| ω                    | Kreisfrequenz                                     |

## Kurzfassung

Die vorliegende Arbeit beschäftigt sich mit den extrinsischen - somit von der Gehäusesowie Schaltungsumgebung bedingten - und den intrinsischen - also vom Chip herrührenden -Beeinflussungen des Verhaltens von Leistungshalbleiterbauelementen aus Siliziumkarbid (SiC). Zunächst werden deren strukturelle Eigenschaften und die Auswirkungen parasitärer Elemente allgemein betrachtet. Anschließend erfolgt eine Zusammenfassung der für die Charakterisierung verwendeten Messschaltungen sowie der durch notwendige Bestandteile der Schaltung eingebrachten parasitären Elemente. Es wird dabei unter anderem der planare M-Shunt, der mit dem Koaxialshunt verwandt ist, untersucht. Den Messergebnissen zufolge weist der M-Shunt - wie angestrebt - eine deutlich geringere Streuinduktivität auf als der häufig in Messschaltungen genutzte Koaxialshunt. Die Charakterisierung der SiC-Dioden und SiC-Transistoren wird mittels statischer und dynamischer Messmethoden, das heißt mit unterschiedlichen Kennlinienschreibern und einem Doppelpulsmessplatz, durchgeführt. Der Sperrbetrieb der Dioden wird im Hinblick auf die thermische Stabilität untersucht und die Leckströme werden in Abhängigkeit der Sperrschichttemperatur beschrieben. Ein wesentliches Ergebnis der Messungen ist, dass die thermische Stabilität der SiC-Dioden nur unter atypischen Umgebungsbedingungen hinterfragt werden muss beziehungsweise gefährdet ist. Demgegenüber werden bei der dynamischen Charakterisierung der Dioden die Einschaltüberspannung sowie die zu extrahierende Ladung beim Ausschalten bestimmt. Abschließend werden die ermittelten Kenngrößen jeweils mit den entsprechenden Werten von Silizium-Dioden verglichen. Bei den statischen Messungen der SiC-Transistoren wird das Durchlassverhalten hinsichtlich verschiedener Transistortypen sowie herstellerbedingter Unterschiede beim SiC-MOSFET aufgezeigt. Die dynamische Vermessung der Transistoren umfasst eine Analyse des Einflusses der Ansteuerparameter, der Gehäuse, der Sperrschichttemperatur und unterschiedlicher SiC-Freilaufdioden auf das Schaltverhalten beziehungsweise auf die Schaltenergien. Mit Hilfe der Messungen lässt sich unter anderem quantitativ zeigen, wie groß der Vorteil von mit Kelvin-Source-Anschluss ausgestatteten Gehäusen gegenüber klassischen Gehäusen wie dem TO-247-3L-Gehäuse ist. Allerdings wird anhand ergänzend durchgeführter Simulationen auch ersichtlich, dass es bei den mit einem Kelvin-Source-Anschluss aufgewerteten Gehäusen zu neuen Beeinflussungen beziehungsweise auch Einschränkungen kommt, da diese zum Teil in der verwendeten Schaltung eine Zunahme der Streuinduktivitäten hervorrufen. Des Weiteren werden die Zerstörungsgrenzen von SiC-MOSFETs untersucht und das Kurzschlussverhalten beschrieben. Abschließend wird die Anwendbarkeit unterschiedlicher Überspannungsschutzbeschaltungen auf SiC-MOSFETs analysiert. Hierbei zeigt sich, dass insbesondere die von Silizium-IGBTs bekannte Dynamic Active Clamping-Beschaltung auch bei SiC-MOSFETs zu guten Ergebnissen führt.

## Abstract

The present work deals with the extrinsic - thus dependent on the package and the surrounding circuit - and the intrinsic - thus caused by the chip - effects on the behaviour of silicon carbide (SiC) power semiconductor devices. First, their structural properties and the effects of parasitic elements are generally considered. This is followed by a summary of the measuring circuits used for the characterisation as well as the parasitic elements introduced by necessary components of the circuit. Among other things, the planar M-shunt is investigated, which is related to the coaxial shunt. According to the measurement results, the M-shunt has - as desired - a significantly lower stray inductance than the coaxial shunt that is frequently used in measurement circuits. The characterisation of the SiC diodes and SiC transistors is carried out by means of static and dynamic measuring methods, i. e. with different curve tracers and a double pulse test bench. The blocking operation of diodes is examined regarding the thermal stability and the leakage currents are described as a function of the junction temperature. An essential result of the measurements is that the thermal stability of SiC diodes only has to be questioned under atypical environmental conditions and is endangered under these, respectively. In contrast, by dynamic characterisation of the diodes, the turn-on overvoltage and the charge to be extracted during turn-off are determined. Finally, the investigated values are compared with the corresponding values of silicon diodes. Static measurements of SiC transistors show the on-state behaviour regarding different transistor types as well as manufacturer specific differences for SiC-MOSFETs. The dynamic characterisation of the transistors comprises an analysis of the impact of the drive parameters, the housing, the junction temperature and different SiC freewheeling diodes on the switching behaviour and the switching energies, respectively. The measurements show i. a. quantitatively the great advantage of housings with Kelvin source connection over the classical TO-247-3L housing. However, based on additional simulations, it becomes apparent that new influences and restrictions arise due to the usage of the housings with Kelvin source connection, since in some cases these lead to higher stray inductances in the used circuit. Furthermore, the destruction limits of SiC-MOSFETs are investigated and the short-circuit behaviour is described. Finally, the application of different overvoltage protection circuits to SiC-MOSFETs is analysed. It is shown that in particular the dynamic active clamping circuit, which is known from silicon IGBTs, leads also to good results for SiC-MOSFETs.