Fortschritt-Berichte VDI

VDI

Reihe 21 Elektrotechnik

Dipl.-Ing. Richard Günther, Dresden

Nr. 423

Akustische-Oberflächenwellen-Motor mit nichtpiezoelektrischem Statorwerkstoff

Technische Universität Dresden Institut für Feinwerktechnik und Elektronik-Design Institutsdirektor Prof. Dr.-Ing. habil. Jens Lienig

Das Erste

Technische Universität Dresden

Akustische-Oberflächenwellen-Motor mit nichtpiezoelektrischem Statorwerkstoff

Richard Günther

von der Fakultät Elektrotechnik und Informationstechnik der Technischen Universität Dresden zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

(Dr.-Ing.)

genehmigte Dissertation

Vorsitzender:	Prof. DrIng. habil. Uwe Marschner
Gutachter:	Prof. DrIng. habil. Jens Lienig Prof. Dr. rer. nat. habil. Gerhard Lindner
Tag der Einreichung: Tag der Verteidigung:	01.03.2021 08.06.2021

Fortschritt-Berichte VDI

Reihe 21

Elektrotechnik

Dipl.-Ing. Richard Günther, Dresden

Nr. 423

Akustische-Oberflächenwellen-Motor mit nichtpiezoelektrischem Statorwerkstoff

Technische Universität Dresden Institut für Feinwerktechnik und Elektronik-Design Institutsdirektor Prof. Dr.-Ing. habil. Jens Lienig

Günther, Richard Akustische-Oberflächenwellen-Motor mit nichtpiezoelektrischem Statorwerkstoff

Fortschr.-Ber. VDI Reihe 21 Nr. 423. Düsseldorf: VDI Verlag 2021. 192 Seiten, 75 Bilder, 18 Tabellen. ISBN 978-3-18-342321-7, ISSN 0178-9481, € 67,00/VDI-Mitgliederpreis € 60,30.

Für die Dokumentation: Ultraschallmotor – Akustische-Oberflächenwellen-Motor – Rotationssymmetrie – Rayleigh Wellen – piezoelektrisch – PZT

Keywords: ultrasonic motor – SAW actuator – rotationally symmetric – Rayleigh waves – piezoelectric – PZT

Motoren, die akustische Oberflächenwellen (AOW) nutzen, sind einfach im Aufbau, erlauben eine große Positioniergenauigkeit und eine hohe Leistungsdichte. Diese Arbeit präsentiert erstmals einen AOW-Motor mit Stahl als Statorwerkstoff. Dabei erzeugen quaderförmige, auf den Stahl geklebte, normal polarisierte piezoelektrische Einheiten aus Blei-Zirkonat-Titanat die AOW. Weiterhin untersucht diese Arbeit erstmalig den rotationssymmetrischen Aufbau von AOW-Motoren und sich ergebende Abweichungen im AOW-Verhalten. Für dessen Umsetzung wird der Dickschichtdruck piezoelektrischer Werkstoffe vorgestellt und getestet. Für die Dimensionierung und den Vergleich der Prototypen stehen numerische Modelle der Statoren und des Motors insgesamt zur Verfügung, wobei ein bestehendes Motormodell um neue benötigte Komponenten erweitert wird.

Bibliographische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet unter www.dnb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek

(German National Library)

The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie (German National Bibliography); detailed bibliographic data is available via Internet at www.dnb.de.

© VDI Verlag GmbH · Düsseldorf 2021

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe (Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung, vorbehalten.

Als Manuskript gedruckt. Printed in Germany. ISSN 0178-9481 ISBN 978-3-18-342321-7

Vorwort

Diese Arbeit entstand während meiner Tätigkeit am Institut für Feinwerktechnik und Elektronik-Design an der Technischen Universität Dresden. Sie präsentiert die wissenschaftlichen Erkenntnisse und Ergebnisse meiner Forschung zu Akustische-Oberflächenwellen-Motoren mit nichtpiezoelektrischem Statorwerkstoff und einem möglichen rotationssymmetrischen Aufbau dieser Motoren. Bei der Bewältigung dieser Arbeit habe ich beeindruckend viel Unterstützung verschiedener Art erhalten, die wesentlich zum Gelingen dieser Arbeit beigetragen hat und für die ich hier danken möchte.

An erster Stelle ist natürlich mein Doktorvater und Erstgutachter Prof. Dr.-Ing. habil. Jens Lienig zu nennen, der mir die Möglichkeit gab, die Arbeit am Institut für Feinwerktechnik und Elektronik-Design zu schreiben, die Arbeit zielführend betreute und über die Arbeitsgruppe Entwurfsautomatisierung meine Arbeit auch finanziell unterstützte. Für die Übernahme des Zweitgutachtens und den angenehmen und kollegialen Kontakt danke ich ebenfalls Herrn Prof. Dr. rer. nat. habil. Gerhard Lindner sehr.

Darüber hinaus gilt mein Dank der Arbeitsgruppe Medizinische Gerätetechnik von Dr.-Ing. René Richter, welcher ich die wesentliche Finanzierung zu verdanken habe, in deren kollegialer Atmosphäre ich mich immer wohl fühlte und die mir stets mit Rat und Tat zur Seite stand. Namentlich möchte ich zudem meinen Kollegen Dr.-Ing. Jens Schirmer erwähnen, dessen fachlichen und menschlichen Rat ich jederzeit in Anspruch nehmen konnte und der auch mit seiner Arbeitsgruppe Feinwerktechnische Konstruktion und Systeme meine Forschung finanziell mittrug.

Ein ganz großes Dankeschön gilt Dr.-Ing. Hagen Schmidt und Dr.-Ing. Robert Weser vom Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, die mir neben fachlichem Rat teure Messtechnik auf Anfrage immer zur Verfügung stellten. Ebenso bin ich Dr.-Ing. Stefan Schumann vom Institut für Grundlagen der Elektrotechnik und Elektronik an der Technischen Universität Dresden sehr dankbar, der mir vielfach unkompliziert Messtechnik zur Verfügung stellte und auch nicht zögerte, mir fachlich zu helfen. Ebenso möchte ich an dieser Stelle Dr.-Ing. Marco Luniak vom Institut für Aufbau- und Verbindungstechnik der Elektronik an der Technischen Universität Dresden dafür danken, dass er mir bei Bedarf immer wieder auf verschiedenste Art technischen Beistand leistete. Christina Schröder vom Institut für Eisen- und Stahltechnologie an der Technischen Universität Freiberg half mir mit sehr viel Engagement bei der Herstellung hoher Oberflächengüten der Motorkomponenten, wofür ich ebenfalls herzlich danke.

Weiterhin möchte ich Dr.-Ing. Sylvia Gebhardt und Susanne Tilke vom Fraunhofer-Institut für Keramische Technologien und Systeme für die gute und rege Zusammenarbeit bei der Herstellung der piezoelektrischen Komponenten danken. Herrn Sebastian Killge danke ich für das freundliche Miteinander bei der Herstellung der Läufer und der Messung von Oberflächen. Ebenfalls bin ich Dr. Hartmut Siegel vom Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden und all meinen Kolleginnen und Kollegen des Instituts für Feinwerktechnik und Elektronik-Design für das gute Miteinander und die fachliche und technische Unterstützung dankbar. Bei der Niederschrift der Arbeit hatte ich das Glück, auf die langjährige Erfahrung von Prof. Dr.-Ing. habil. Dr. h. c. Werner Krause zurückgreifen zu dürfen, wofür ich besonders danken möchte.

Nicht zuletzt gilt ein großer Dank auch meiner wunderbaren Familie, die meine Arbeit nicht nur finanziell mittrug, sondern mir auch menschlich stets beistand und die meiner Arbeit vielleicht auch die eine oder andere Sorgenfalte zu verdanken hat.

Inhaltsverzeichnis

Zeichen, Benennungen und Einheiten V			VII
1	Einl	eitung	1
2	Star	nd der Technik	3
	2.1	Körperschall	3
		2.1.1 Wellenarten	3
		2.1.2 Methoden zur Anregung von akustischen Oberflächenwellen	11
		2.1.3 Parasitäre Dämpfung akustischer Oberflächenwellen	14
		2.1.4 Anwendung von akustischen Oberflächenwellen	16
	2.2	Erzeugen linearer Relativbewegungen	19
		2.2.1 Elektromagnetische Linearantriebe	20
		2.2.2 Piezoelektrische Linearmotoren	22
		2.2.3 Vergleich am Markt erhältlicher Linearantriebe	26
		2.2.4 Akustische-Oberflächenwellen-Motor	29
	2.3	Piezoelektrische Werkstoffe für aktorische Hochfrequenzanwendungen	34
		2.3.1 Herstellung piezoelektrischer Werkstoffe	34
		2.3.2 Allgemeine Beschreibung innerer Verluste	36
		2.3.3 Relevante piezoelektrische Werkstoffe	37
		2.3.4 Frequenzabhängigkeit der Verluste ausgewählter Werkstoffe	39
		2.3.5 Verluste von Resonatoren im Resonanz- und Antiresonanzfall	39
	2.4	Zusammenfassung	
3	Prä	azisierung der Aufgabenstellung 42	
4	The	oretische Untersuchungen	46
	4.1	Konzeption	46
		4.1.1 Funktionsstruktur	46
		4.1.2 Wirkprinzipien	47
		4.1.3 Prinziplösungen rotationssymmetrischer Motoren	52
		4.1.4 Prinziplösungen ebener Motoren	56
	4.2	Grobentwurf rotationssymmetrischer Motoren	59
	4.3	Numerisches Motormodell	67
	4.4	Entwurf ebener Läufer	76
	4.5	Entwurf ebener Statoren	80
		4.5.1 Numerische Modelle	80

		4.5.2 Stator mit geklebter AOWEE	83 93
	4.6	Zusammenfassung	98
5	Experimentelle Untersuchungen 10		
	5.1	Statoren	100
		5.1.1 AUIDAU des Versuchsstandes	100
		5.1.2 Messunschernensbetrachtungen	102
		5.1.3 Auswertung der Versuche mit gedruckter AOWEE	111
		5.1.5 Zusammenfassung	114
	5.2	Motor mit geklebter AOWEE	115
		5.2.1 Aufbau des Versuchsstandes	115
		5.2.2 Messunsicherheitsbetrachtungen	117
		5.2.3 Auswertung der Versuche	118
		5.2.4 Diskussion der Ergebnisse	119
		5.2.5 Zusammenfassung	129
6	Rich	ntlinien zur Auslegung von AOW-Motoren mit Stahlstator	130
7	Gesamtzusammenfassung und Ausblick 13		135
Ar	nhang	5	
Α	Lam	nb-Wellen in Zylindern	139
	A.1	Grundlagen	139
	A.2	Longitudinal- und Transversalgleichungen	141
	A.3	Verschiebungen	144
	A.4	Kreiswenenzam	147
В	Werkstoffparameter zur Berechnung piezoelektrischer Verluste 15		150
С	Tab	ellen zur Nutzwertanalyse der Varianten der AOWEE	151
D	Reib	pungskoeffizient und Anpresskraft Läufer	154
	D.1	Reibungskoeffizient	154
	D.2	Anpresskraft Läufer	156
Е	Ebe	nheit und Rauheit geläppter Substrate	159
F	Elek	trisches Verhalten unpolarisierter Statoren	163
G	G Messwerte Motorparameter 1		
	Mes	sswerte Motorparameter	165

Zeichen	Benennung	Einheit
$A, A_{\rm ksp}, A_{\rm l}$	Fläche, durch Wölbung resultierende Kontaktfläche, kontaktseitige Läuferfläche	m ²
A'	Relative Kontaktfläche	-
$a, a_{\rm e}$	Beschleunigung, Fallbeschleunigung auf der Erde	m/s^2
B_{jm}	Koeffizient zur Bestimmung der mechanischen Impedanz bei harmonischer Anregung eines ebenen Halbraums über eine kreisförmige Kontaktfläche	-
$b_{\rm F},b_{\rm FA},b_{\rm IDT},b_{\rm l}$	Breite der Fingerelektroden des IDT, Abstand der Fingerelektroden des IDT, Breite des IDT, Breite des Läufers	m
C_1	Unbestimmte Konstante	1/m
C_2	Unbestimmte Konstante	$N^{0,5}/m^{0,5}$
C_3	Koeffizient einer Differentialgleichung	m
C_4	Verhältnis von Wellenleistung zum Quadrat der normalen Auslenkungsamplitude der Statoroberfläche	W/m^2
$\begin{array}{c} C_5, C_6, C_7, C_{7{\rm a}},\\ C_8 \end{array}$	Koeffizienten von Differentialgleichungen	m^2
с	Elastizitätstensor	N/m^2
С	Wellengeschwindigkeit	m/s
$\begin{array}{l} D, D_{\rm E}, D_{\rm l}, D_{\rm LNO},\\ D_{\rm s}, D_{\rm Si} \end{array}$	Elastizitätsmodul, Ersatzelastizitätsmodul, Elastizitätsmodul für Läuferwerkstoff, Lithiumniobat, Statorwerkstoff und Silizium	N/m^2

Zeichen	Benennung	Einheit
D_{jm}	Komponente des Elastizitätsmoduls	$\rm N/m^2$
d_{jm},d_{jm}^*	Realer bzw. komplexer piezoelektrischer Verformungskoeffizient	$\mathrm{m/V}$
$E,E_{\rm kin},E_{\rm pot}$	Energie, kinetische bzw. potentielle Energie	J
$\begin{array}{l} F,F_{\rm bl},F_{\rm f},F_{\rm fr},F_{\rm G},\\ F_{\rm k},F_{\rm l},F_{\rm N},F_{\rm r},F_{\rm v} \end{array}$	Kraft, Blockierkraft, Fourier-Transformierte der Kraft F, Reibungskraft, Gewichtskraft, Kontaktkraft, Vorschubkraft, Gesamtanpresskraft, rückwärts wirkende Kraft, vorwärts wirkende Kraft	N
$F_{\rm bl}^\prime$	Auf Referenzblockierkraft normierte Blockierkraft	-
$f,f_{\rm a},f_{\rm FG},f_{\rm r}$	Frequenz, Antiresonanzfrequenz, Frequenz des Funktionsgenerators, Resonanzfrequenz	1/s
$\begin{array}{l} G,G_{\rm d},G_{\rm E},\\ G_{\rm spmax} \end{array}$	Höhe, totale Deformation, Ebenheit, Maximale Erhabenheit bei sphärischer Wölbung	m
g_{j}	j-ter $Fourier$ -Koeffizient für gerade Funktion der Kraft F	Ν
H_1	Hilfsfunktion	-
H_2	Hilfsfunktion	$\mathrm{m}^2/\mathrm{V}^2$
H_3, H_4	Hilfsfunktionen	m^2
h	$\theta\text{-}\mathrm{Komponente}$ des Hilfsvektorpotentials $\vec{\psi}$	m^2
Ι	Elektrischer Strom	А
Î	Amplitude des elektrischen Stromes	А
i	Intensität der AOW	m^2
j	laufender Index	-
$\begin{array}{l} K,K_{\rm ges},K_{\rm h},K_{\rm l},\\ K_{\rm s} \end{array}$	Steifigkeit, Gesamtsteifigkeit, Steifigkeiten Halbraum, Läufer und Stator	N/m
k_{jm}	Elektromechanischer Koppelfaktor	1/m
l	Läuferlänge	m
$M, M_{\rm l}$	Reibungskoeffizient, Reibungskoeffizient zwischen Siliziumläufer und Stahlsubstrat	-

VIII

Zeichen	Benennung	Einheit
m	laufender Index	-
N	Modellfunktion	*
$\begin{array}{l} n_{\rm e}, n_{\rm FP}, n_{\rm G}, n_{\rm K},\\ n_{\rm Pe}, n_{\rm p}, n_{\rm pk}, n_{\rm S},\\ n_{\rm X} \end{array}$	Anzahl Eingangsmessgrößen, Anzahl der Fingerpaare eines IDT, Anzahl Messpunkte der Höhe, Anzahl Kontaktpunkte, Anzahl Perioden, Anzahl Noppen, Anzahl kontaktierter Noppen, Anzahl der Stützpunkte für eine Periode, Anzahl Messpunkte einer Messgröße X	-
n_0	Porenanzahl pro Volumen	$1/m^3$
0	Ordnung des <i>Fourier</i> -Polynomes	-
O_j	$j\text{-}\mathrm{ter}\ Fourier\text{-}\mathrm{Koeffizient}$ für ungerade Funktion der Kraft F	Ν
$\begin{array}{l} P,P_{\rm d},P_{\rm el},P_{\rm f},P_{\rm l},\\ P_{\rm FG}^{*} \end{array}$	Leistung, dynamische Verluste, elektrische Eingangsleistung, Reibungsverluste, Motorleistung, komplexe Ausgangsleistung des Funktionsgenerators	W
$\hat{P}_{ m FG}$	Amplitude der Ausgangsleistung des Funktionsgenerators	W
P'	Normierte Leistung	-
p	Masse	kg
$Q_{\rm m},Q_{\rm a},Q_{\rm r}$	Mechanischer Qualitätsfaktor, mechanischer Qualitätsfaktor für den Antiresonanz bzw. Resonanzfall	-
q	Elektrische Ladung	С
\hat{q}	Amplitude der elektrischen Ladung	С
$R_{\rm e}, R_{{\rm p}0,2}$	Streckgrenze, 0,2-%-Dehngrenze	N/m^2
$R_{\rm a},R_{\rm au}$	Mittenrauwert, Mittenrauwert ungefiltert	m
$R_{\rm k},R_{\rm o},R_{\rm sp}$	Kontaktradius, Außenradius, sphärischer Wölbungsradius	m
r	Radiale Position im zylindrischen Koordinatensystem	m
$S, \vec{S}_{k}, \vec{S}_{z}$	Dehnung, Verzerrungstensor im kartesischen und zylindrischen Koordinatensystem	-

Zeichen	Benennung	Einheit
$S_{rr}, S_{\theta \theta}, S_{zz}$	Dehnungskomponente in r -, θ - und z -Richtung im zylindrischen Koordinatensystem	-
s_{jm}, s_{jm}^*	Realer bzw. komplexer Elastizitätskoeffizient	m^2/N
$T,T_{\rm PZT}$	Dicke oder Höhe, Dicke der PZT-Schicht	m
t	Zeit	S
$U,U_{\rm ges},U_{\rm s}$	Elektrische Spannung, Spannung über Stator und Innenwiderstand des Funktionsgenerators, Spannung am Stator	V
$\hat{U}, \hat{U}_{ ext{ges}}, \hat{U}_{ ext{s}},$ $\hat{U}_{ ext{s} ext{tan } \delta}$	Amplitude der elektrischen Spannung, Amplitude der Spannung über Stator und Innenwiderstand des Funktionsgenerators, Amplitude der Spannung am Stator, Amplitude der Spannung am Stator unter Berücksichtigung dielektrischer Verluste	V
$U^\prime,U^\prime_{\rm B},U^\prime_{\rm D}$	Elektrische Feldstärke, Durchschlagfestigkeit, Depolarisationsfeldstärke	V/m
$U''_{\rm PZT}$	Auf die elektrische Eingangsspannung bezogene Feldstärke im PZT	1/m
$u,\vec{u}_{\rm z},u_{\rm ln0},u_{\rm l}$	Verschiebung, Verschiebungsvektor im zylindrischen Koordinatensystem, normaler Startversatz des Läufers, Läuferversatz	m
$u_{\rm S}$	Auslenkung an der Statoroberfläche	m
$\hat{u},\hat{u}_{\rm S},\hat{u}_{\rm SZiel}$	Auslenkungsamplitude, Auslenkungsamplitude an der Statoroberfläche, angestrebte Auslenkungsamplitude der Statoroberfläche	m
$u'_{\rm S}, u'_{z{ m S}\tan\delta}$	Auslenkung der Statoroberfläche bezogen auf die Statorspannung, Auslenkung der Statoroberfläche bezogen auf die Statorspannung unter Berücksichtigung dielektrischer Verluste	m/V
V	Volumen	m^3
V'	Relatives Volumen	-

Zeichen	Benennung	Einheit
$v, v_{\text{leer}}, v_{\text{l}}$	Geschwindigkeit, Leerlaufgeschwindigkeit, Läufergeschwindigkeit	m/s
\hat{v}_{S}	Geschwindigkeitsamplitude an der Statoroberfläche	m/s
$v'_{\rm leer}$	Auf Referenzleerlaufgeschwindigkeit normierte Leerlaufgeschwindigkeit	-
$\hat{v}_{ m S}'$	Normierte Geschwindigkeitsamplitude an der Statoroberfläche	-
W	Wirkungsgrad	-
w	Hilfsfunktion	1/m
X_j, \bar{X}	Messwert mit der Nummer j , arithmetischer Mittelwert der Messwerte	*
x	Position auf der Abszisse im kartesischen Koordinatensystem	m
Y	Messgröße	*
y	Position auf der Ordinate im kartesischen Koordinatensystem	m
$Z, Z_{\rm i}, Z_{\rm s}, Z_{ m s tan \delta}$	Elektrische Impedanz, Innenwiderstand, Impedanz des Stators, Impedanz des Stators unter Berücksichtigung dielektrischer Verluste	Ω
Z_{M}	Mechanische Impedanz	kg/s
$z,z_{\rm p},z_{\rm S}$	Position, Position einer Noppe bzw. der Statoroberfläche auf der Applikate im kartesischen Koordinatensystem	m
α	Räumlicher Amplitudendämpfungskoeffizient	1/m
$\tan\beta$	Gesamtverlust in piezoelektrischen Werkstoffen	-
Г	Reflexionskoeffizient	dB
γ_{rz}	Ingenieurscherdehnung	-
$\tan\gamma$	Elastischer Verlust	-
$\tan \gamma_{jm}$	Komponente des elastischen Verlustes	-
Δ	Variationskoeffizient	-
$\tan\delta$	Dielektrischer Verlust	-
$\tan \delta_{jm}$	Komponente des dielektrischen Verlustes	-
$\epsilon_{jm}, \epsilon_{jm}^*$	Reale bzw. komplexe Permittivität	A s/(V m)

Zeichen	Benennung	Einheit
ϵ_0	Elektrische Feldkonstante	A s/(V m)
$\tan\zeta$	Piezoelektrischer Verlust	-
$\tan\zeta_{jm}$	Komponente des piezoelektrischen Verlustes	-
$\eta,\eta_{\rm f},\eta_{\rm r}$	Effektivitätsfaktor, Effektivitätsfaktor für Formtoleranz bzw. Oberflächengüte	-
$\Theta,\Theta_{\rm O},\Theta_{\rm V}$	Symmetrische Grenzabweichung, symmetrische Grenzabweichung des Oszilloskopes und des Vibrometers	*
θ	Winkelposition im zylindrischen Koordinatensystem	-
L	Messunsicherheit	*
к	Kreiswellenzahl	1/m
$\Lambda,\Lambda_{\rm IDT}$	Wellenlänge, doppelter Fingerabstand eines IDT	m
λ	Erste Lamé-Konstante	$\rm N/m^2$
μ	Zweite <i>Lamé</i> -Konstante bzw. Schubmodul	N/m^2
ν,ν_l,ν_s	Querkontraktionszahl, Querkontraktionszahl für Läufer- bzw. Statorwerkstoff	-
ν_{jm}	Komponente der Querkontraktion	-
ξ	Hilfsgröße	-
П	Verteilungsfunktion der Normalverteilung	-
$ ho_0$	Dichte	$\rm kg/m^3$
Σ	Sicherheitsfaktor	-
$\begin{array}{l} \sigma,\sigma_{\rm B},\vec{\sigma}_{\rm k},\sigma_{\rm vH},\\ \sigma_{\rm vM},\sigma_{\rm Z},\vec{\sigma}_{\rm z} \end{array}$	Mechanische Spannung, Bruchmodul, mechanischer Spannungstensor im kartesischen Koordinatensystem, Hauptnormalspannung, <i>von-Mises</i> -Vergleichsspannung, Zugfestigkeit, mechanischer Spannungstensor im zylindrischen Koordinatensystem	N/m ²
σ_{jm}	Mechanische Spannungskomponente	N/m^2
$\varsigma, \varsigma(ar{X})$	Standardabweichung, Standardabweichung des Mittelwerts einer Messgröße \bar{X}	*

Zeichen	Benennung	Einheit
$\varsigma(u_{ m n})$	Standardabweichung der Noppenpositionen in normaler Richtung	m
υ	Verhältnis Wellengeschwindigkeit zur Transversalwellengeschwindigkeit	-
Φ	Hilfsskalarpotential	m^2
$\phi,\phi_{\rm I},\phi_{\rm q},\phi_{\rm U},\phi_{\rm u}$	Phasenwinkel, Phasenwinkel des elektrischen Stromes, der Ladung, der elektrischen Spannung und der Verschiebung	-
χ_1, χ_2	Schätzwert der Eingangsgröße bei zufälliger bzw. systematischer Messabweichung	*
$\vec{\Psi}, \Psi$	Hilfsvektor- bzw. Hilfsskalarpotential	m^2
ψ	Sprungfunktion	-
ω	Winkelgeschwindigkeit	1/s

*Einheit ist abhängig von der betrachteten Messgröße

XIII

Indizes	Benennung
Unterer Index A	Rotationssymmetrische Lamb-Welle
Oberer Index E	Unter konstanter elektrischer Feldstärke
Unterer Index E	Ersatz
Unterer Index L	Longitudinalwelle
Unterer Index M	Gemessener Wert
Unterer Index max	Maximalwert
Unterer Index min	Minimalwert
Unterer Index n	Normalkomponente
Unterer Index P	Poren
Unterer Index p	Noppen
Unterer Index R	Planare Rayleigh-Welle
Unterer Index \boldsymbol{r}	Radiuskoordinate im zylindrischen
	Koordinatensystem
Oberer Index T	Unter konstanter mechanischer Spannung
Unterer Index T	Transversalwelle
Unterer Index t	Tangentialkomponente
Unterer Index x	Abszisse im karthesischen Koordinatensystem
Unterer Index y	Ordinate im karthesischen Koordinatensystem
Unterer Index \boldsymbol{z}	Applikate im karthesischen bzw. zylindrischen Koordinatensystem
Unterer Index θ	Winkelkoordinate im zylindrischen Koordinatensystem

Abkürzung	Benennung
Al_2O_3	Aluminiumoxid
AOW	Akustische Oberflächenwelle
AOWEE	Akustische Oberflächenwellen erzeugende Einheit
BLSF	bismuth layer structured ferroelectrics
BNT	Bismut-Natrium-Titanat
d_{31} -Effekt	piezoelektrischer Transversaleffekt
$d_{33}\text{-}\mathrm{Effekt}$	piezoelektrischer Longitudinaleffekt
DC	direct current
DFT	diskrete Fourier-Transformation
dyn.	dynamisch
el.	elektrisch
FEM	Finite Elemente Methode
gekl.	geklebt
Geschw.	Geschwindigkeit
HF	Hochfrequenz
IDT	Interdigitaltransducer
KNN	Kalium-Natrium-Niobat
LiNbO_3	Lithiumniobat
LTCC	Low Temperature Cofired Ceramics
max.	maximal
min.	minimal
NBT	Bismut-Natrium-Titanat
PbTiO_3	Bleititanat
piezoel.	piezoelektrisch
PZT	Blei-Zirkonat-Titanat
RFID	Radio-frequency identification
Sim.	Simulation
SMA	Sub-Miniature-A
SWV	Stehwellenverhältnis
V.	Variante
$\rm ZrO_2$	Zirkonium(IV)-oxid
ZW.	zwischen

Kurzfassung

Motoren, die akustische Oberflächenwellen (AOW) nutzen, sind einfach im Aufbau, erlauben eine große Positioniergenauigkeit und eine hohe Leistungsdichte. Vorhandene AOW-Motoren nutzen einen Stator aus einem einkristallinen piezoelektrischen Werkstoff. Dadurch ist die Herstellung verhältnismäßig teuer, und es gibt bei der Gestaltung eines solchen Motors kaum Spielraum bei Werkstoffeigenschaften wie Reibungskoeffizient oder Sprödheit. Weiterhin wird der Wirkungsgrad eines solchen Motors dadurch herabgesetzt, dass Teile der AOW ungenutzt seitlich am Läufer vorbei laufen.

Diese Arbeit präsentiert erstmals einen AOW-Motor mit Stahl als Statorwerkstoff. Dabei erzeugen quaderförmige, auf den Stahl geklebte, normal polarisierte piezoelektrische Einheiten aus Blei-Zirkonat-Titanat die AOW. Bei einer Betriebsfrequenz von 3,85 MHz betrug der Wirkungsgrad 17 %. So konnten Leerlaufgeschwindigkeiten von 29 mm/s und Blockierkräfte von 190 mN gemessen werden.

Weiterhin untersucht diese Arbeit erstmalig den rotationssymmetrischen Aufbau von AOW-Motoren und sich ergebende Abweichungen im AOW-Verhalten. Für dessen Umsetzung wird der Dickschichtdruck piezoelektrischer Werkstoffe vorgestellt und getestet. Dieser rotationssymmetrische Aufbau hat den Vorteil, dass sich der Läufer selbst auf den Stator anpresst und keine Komponenten der AOW ungenutzt am Läufer vorbeiwandern.

Für die Dimensionierung und den Vergleich der Prototypen stehen numerische Modelle der Statoren und des Motors insgesamt zur Verfügung, wobei ein bestehendes Motormodell um neue benötigte Komponenten erweitert wird.

Abstract

Surface acoustic wave (SAW) motors are simple in design, allow high positioning accuracy and a high power density. Pre-existing SAW motors have a stator made from a piezoelectric single crystal. This results in relatively high manufacturing costs and the variation of material properties like friction coefficient and brittleness is very limited. Furthermore, there is a decrease of efficiency due to components of SAW passing the slider at its sides.

This thesis presents the first SAW motor using steel as stator material. SAWs are generated by cuboidal units made from lead zirconate titanate. They are adhered on the steel substrate with the polarization axis normal to the contact surface. Using a working frequency of 3.85 MHz, SAWs were generated with an efficiency of 17%. Thus, idling speeds of 29 mm/s and blocking forces of 190 mN were measured.

In addition, this thesis discusses a rotationally symmetric structure of SAW motors for the first time. In this regard, the influence of rotationally symmetric SAWs on such a motor is considered. Furthermore, SAWs were generated on steel stators using piezoelectric components made by thick film technology. The presented technology allows the production of rotationally symmetric motor setups. Using such a setup for a SAW motor, the slider would automatically be pressed onto the stator and proportions of the SAW cannot pass the slider at its sides.

For the dimensioning and comparison with prototypes numerical models of stators and the whole motor are used. In this context, new necessary components have been added to an existing motor model.