

REIHE 21 ELEKTROTECHNIK

Fortschritt-Berichte VDI

M. Sc. Manuel Oberneder, Büchlberg

NR. 424

Modellbildung, Dimensionierung und modellbasierte Regelung des Modularen Mehrpunktstromrichters zur systemoptimalen Betriebsführung von Drehstrommaschinen

BAND 1|1

VOLUME

FernUniversität in Hagen Schriften zur Informationsund Kommunikationstechnik

https://doi.org/10.51202/9783186424211-l Generiert durch IP '3.145.111.107', am 13.05.2024, 01:53:20. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

https://doi.org/10.51202/9783186424211-I Generiert durch IP '3.145.111.107', am 13.05.2024, 01:53:20. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig Modellbildung, Dimensionierung und modellbasierte Regelung des Modularen Mehrpunktstromrichters zur systemoptimalen Betriebsführung von Drehstrommaschinen

> Dissertation zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften (Dr.-Ing.) in der Fakultät Mathematik und Informatik der FernUniversität in Hagen

> > vorgelegt von M.Sc. Manuel Oberneder geboren am 03.03.1987 in Hutthurm

> > > Hagen, 2022

1. Gutachter: Prof. Dr.-Ing. Detlev Hackstein, FernUniversität in Hagen

2. Gutachter: Prof. Dr.-Ing. Michael Saller, OTH Regensburg

Tag der mündlichen Prüfung 26.01.2022

REIHE 21 ELEKTROTECHNIK

Fortschritt-Berichte VDI

M. Sc. Manuel Oberneder, Büchlberg

NR. 424

Modellbildung, Dimensionierung und modellbasierte Regelung des Modularen Mehrpunktstromrichters zur systemoptimalen Betriebsführung von Drehstrommaschinen

BAND 1|1

VOLUME

FernUniversität in Hagen Schriften zur Informationsund Kommunikationstechnik

Generiert durch IP '3:145:111:107', am 13:05:2024, 01:53:20. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

vdi verlag

Oberneder, Manuel

Modellbildung, Dimensionierung und modellbasierte Regelung des Modularen Mehrpunktstromrichters zur systemoptimalen Betriebsführung von Drehstrommaschinen

Fortschritt-Berichte VDI, Reihe 21, Nr. 424. Düsseldorf: VDI Verlag 2022. 204 Seiten, 119 Bilder, 11 Tabellen. ISBN 978-3-18-342421-4, E-ISBN 978-3-18-642421-1, ISSN 0178-9481 71,00 EUR/VDI-Mitgliederpreis: 63,90 EUR

Für die Dokumentation: Modularer Mehrpunktstromrichter – Modelbasierte Regelung – Analytische Lösung – Drehstrommaschine – Windenergieerzeugung – Auslegungsverfahren

Keywords: Modular Multilevel Converter – model-based control – analytical solution – three-phase electrical machine – wind power generation – design procedure

Die vorliegende Arbeit wendet sich an Ingenieur*innen und Wissenschaftler*innen aus der Elektrotechnik. Sie befasst sich mit der Ansteuerung von Drehstrommaschinen durch den Modularen Mehrpunktstromrichter (M2C) auf Basis einer allgemeinen Lastdefinition und der umfänglichen analytischen Lösung der Systemgleichungen. Diese Lösung bildet die Grundlage zur Regelung der Zweigenergien bei einer minimalen Komponentenbelastung, indem die Steuergrößen identifiziert und die Möglichkeiten einer modellbasierten Regelung aufgezeigt werden. Des Weiteren wird ein Auslegungsverfahren vorgestellt, welches mit geringer Rechenzeit eine umfängliche Variation der Systemparameter des M2Cs in Kombination mit einer Drehstrommaschine erlaubt. Die gezeigten Regelungs- und Ansteueralgorithmen werden außerdem mittels Simulationen sowie durch einen Versuchsaufbau verifiziert.

Bibliographische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet unter www.dnb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek (German National Library)

The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie (German National Bibliography); detailed bibliographic data is available via Internet at www.dnb.de.

Schriften zur Informations- und Kommunikationstechnik Herausgeber: Wolfgang A. Halang, Lehrstuhl für Informationstechnik Herwig Unger, Lehrstuhl für Kommunikationstechnik FernUniversität in Hagen

VDI Verlag GmbH | Düsseldorf 2022

Als Manuskript gedruckt. Printed in Germany. Vertrieb und Nachdruck VDI Verlag GmbH. ISBN 978-3-18-342421-4, E-ISBN 978-3-18-642421-1, ISSN 0178-9481 Das Werk steht unter Creative Commons Lizenz Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 International (CC BY-SA 4.0)

URN: urn:nbn:de:hbz:708-dh11803

https://doi.org/10.51202/9783186424211-I Generiert durch IP '3.145.111.107', am 13.05.2024, 01:53:20. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig.

Vorwort

Die vorliegende Arbeit entstand parallel zu meiner beruflichen Tätigkeit als Abteilungsleiter bei der Siemens AG in der Entwicklung für Windkraftgeneratoren.

Bei Herrn Prof. Dr.-Ing. Detlef Hackstein bedanke ich mich sehr für das stets entgegengebrachte Interesse und die vertrauensvolle Zusammenarbeit sowie die Übernahme des Gutachtens.

Herrn Prof. Dr.-Ing. Michael Saller möchte ich ganz besonders für die jahrelange Zusammenarbeit und die große Unterstützung danken. Das entgegengebrachte Vertrauen und die vielen wertvollen Hinweise waren eine große Stütze. Sein Wirken war und ist für mich eine große Inspiration und der Grund für meinen stetigen Drang nach einem umfassenden Verständnis technischer Zusammenhänge.

Michael Scharnagl möchte ich an dieser Stelle für die hilfreichen Diskussionen und Anregungen danken. Außerdem gilt mein großer Dank den Kollegen der Siemens AG, die mich durch technische Diskussionen, beim Aufbau des Prüfstandes und durch die Bereitstellung von Hardware und Messmitteln tatkräftig unterstützt haben.

Meinen Eltern Gertraud und Ludwig sowie meinem Bruder Alexander danke ich für die familiäre Unterstützung, den stetigen Rückhalt und die Freiheiten die ich hatte um meinen Weg zu gehen.

Ein ganz besonderer Dank gilt letztendlich meiner Ehefrau Michaela. Durch ihre großartige Unterstützung und ihre unendliche Geduld hat sie wesentlich zum Gelingen dieser Arbeit beigetragen. Unser Sohn Jonas kann stolz sein, eine solche Mutter zu haben.

Hagen, im Januar 2022

Manuel Oberneder

https://doi.org/10.51202/9783186424211-I Generiert durch IP '3.145.111.107', am 13.05.2024, 01:53:20. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

Inhaltsverzeichnis

Vorwort			111	
Sy	mbo	verzeic	hnis	VII
Kurzfassung XV				
Ab	ostrad	t		xx
1	Einl	eitung		1
	1.1	Motiva	ation	1
	1.2	Eigens	schaften und Klassifizierung von Mehrpunktstromrichtern	3
		1.2.1	Neutral-Point Clamped Topologien	5
		1.2.2	Flying Capacitor Topologie	8
		1.2.3	Cascaded H-Bridge Topologie	8
		1.2.4	Hybrid Topologien	9
		1.2.5	Modular Multilevel Converter Topologie	10
2	Мо	lellbild	ung	14
	2.1	Model	lbildung mit allgemeiner Lastdefinition	15
		2.1.1	Allgemeines Differentialgleichungssystem	17
		2.1.2	Definition der Zweigstrom- und Gleichtaktspannungsfunk-	
			tion	28
		2.1.3	Analyse der symmetrischen Zweigenergien	37
		2.1.4	Analyse der asymmetrischen Zweigenergien	51
		2.1.5	Separation der Last- und Umrichterströme	56
		2.1.6	Anfangsbedingung der Kondensatorspannung	58
	2.2	Masch	inenmodell am Beispiel der permanentmagneterregten Syn-	
		chron	naschine	61
3	Reg	elung ı	und Ansteuerung des elektrischen Triebstrangs	69
	3.1	System	nregelung durch die Zweigströme	70
	3.2	Separa	ate Umrichter- und Lastregelung	72
		3.2.1	Regelung der internen Umrichterströme	75
		3.2.2	Zweigenergieregelung	77
		3.2.3	Maschinenregelung am Beispiel der PMSM	79
	3.3	Modul	lation und Symmetrierung der Submodulspannungen	83
		3.3.1	${\rm Modulationsmethoden} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	84

		3.3.2	Sortieralgorithmus zur Symmetrierung der Submodulspan-	
			nungen	91
	3.4	Syster	nsimulation mit diskretem Umrichtermodell	93
		3.4.1	Regelung der Zweigströme mittels Fehlerfunktion	94
		3.4.2	Validierung der Systemgleichungen	97
		3.4.3	Separierung der Umrichter- und Lastregelung	99
4	Verf	ahren	zur Systemauslegung	102
	4.1	Bestin	nmung der Betriebscharakteristik des PMSGs	105
	4.2	Ausleg	gungsverfahren zum M2C mit Maschinenlast	109
		4.2.1	Bestimmung der Zweiginduktivität	112
		4.2.2	Dimensionierung der Submodulkondensatoren	116
			4.2.2.1 Identifikation auslegungsrelevanter Betriebspunk-	
			te	117
			4.2.2.2 Reduktion der Spannungsschwankung durch die	
			Gleichtaktspannung	118
			4.2.2.3 Minimierung der Kondensatorspannungsbelas-	
			tung durch Kreisströme	122
			4.2.2.4 Temperaturbelastung der Submodulkondensator-	
			en	124
		4.2.3	Charakterisierung der Leistungshalbleiter	127
			4.2.3.1 Regressionsmethode	127
			4.2.3.2 Interpolationsmethode	136
		4.2.4	Dimensionierung der Leistungshalbleiter	137
		4.2.5	Auslegung der Zweigdrossel	144
5	Mes	stechn	ische Validierung der Betriebsführung	156
	5.1	Signal	lverarbeitung	158
	5.2	Betrie	b der Modellanlage	159
		5.2.1	Vorladung der Submodulkondensatoren	160
		5.2.2	Betrieb des LV-M2Cs an einer induktiven Last	162
		5.2.3	Betrieb des LV-M2Cs mit einer Asynchronmaschine $\ .\ .$.	163
6	Fazi	t		170
	6.1	Zusan	nmenfassung	170
	6.2	Ausbli	ick	172
Lit	terati	urverze	ichnis	174

Symbolverzeichnis

Grundzeichen

$\Delta \tilde{w}$	Zeitvariante Zweigenergieschwankung
ΔW	Zeitinvariante Zweigenergieschwankung
Δw	Summe der Zeitvarianten und -invarianten Zweigenergieschwankung
Î	Konstanter Stromspitzenwert
\hat{U}	Konstanter Spannungsspitzenwert
ψ	Zeitvarianter magnetischer Fluss
ρ	Dichte
\tilde{i}	Zeitvarianter Strom
\widetilde{p}	Zeitvariante Leistung
\widetilde{s}	Zeitvariante Schaltfunktion
\widetilde{u}	Zeitvariante Spannung
A	Fläche
В	Magnetische Induktion
C	Kumulierte Zweigkapazität
f	Elektrische Frequenz
G	Übertragungsfunktion
Η	Magnetische Feldstärke
Ι	Zeitinvarianter Strom
i	Summe des Zeitvarianten und -invarianten Stroms
K	Knotenpunkt
L	Zeitinvariante Induktivität
l	Länge
M	Drehmoment
n	Drehzahl der elektrischen Maschine
P	Zeitinvariante Leistung
p	Summe der Zeitvarianten und -invarianten Leistung
R	Zeitinvarianter Widerstand
s	Summe der Zeitvarianten und -invarianten Schaltfunktion

T	Zeitkonstante, Periodendauer
t	Zeit
U	Zeitinvariante Spannung
u	Summe der Zeitvarianten und -invarianten Spannung
V	Volumen
w	Summe der Zeitvarianten und -invarianten Energie

Weitere Formelzeichen

α	Wärmeübergangskoeffizient
β	Lastwinkel zwischen Polradspannungs- und Stromvektor
$\Delta \psi_{\rm Lzs}$	Differentieller Fluss der Zweigdrossel
$\Delta \widetilde{w}_{\Delta}$	Energiehub
$\Delta \tilde{w}_{\rm zs,max}$	Maximum des kumulierten Wechselanteils der Zweigenergieschwan- kung
$\Delta \widetilde{w}_{\rm zs,min}$	Minimum des kumulierten Wechselanteils der Zweigenergieschwan- kung
$\Delta \widetilde{w}_{\rm zs}$	Kumulierter Wechselanteil der Zweigenergieschwankung
$\Delta i_{\rm zs}$	Differentieller Strom der Zweigdrossel
$\Delta W_{\rm j}$	Zeitinvariante Terme der Zweigenergieschwankung
$\Delta w_{\rm j}$	Zeitvariante Terme der Zweigenergieschwankung
$\Delta w_{\rm zs}$	Kumulierte Zweigenergieschwankung
γ	Koordinatentransformationswinkel
\hat{I}_{a}	Amplitudenwert des Laststroms
$\hat{I}_{\mathbf{k}}$	Amplitudenwert des Kreisstroms
$\hat{U}_{\rm a}$	Amplitudenwert der Lastspannung
$\hat{U}_{\rm SN}$	Amplitudenwert der Gleichtaktspannung
λ	Wärmeleitfähigkeit
Λ_{i}	Thermischer Leitwert
μ	Magnetische Permeabilität
μ_0	Magnetische Permeabilität der Luft
$\mu_{\rm Fe}$	Magnetische Permeabilität von Eisen
ν	Ordnungszahl des Kreisstroms
$\nu_{\rm SN}$	Ordnungszahl der Gleichtaktspannung
ω	Kreisfrequenz
$\psi_{\rm dq}$	Verketteter magnetischer Fluss
ψ_{d}	Magnetischer Fluss in d-Richtung
$\psi_{\rm L}$	Magnetischer Fluss der Zweigdrossel
$\psi_{\rm pm}$	Magnetischer Fluss des Permanentmagneten

$\psi_{\mathbf{q}}$	Magnetischer Fluss in q-Richtung
ρ	Dichte
$\tan \delta$	Dielektrischer Verlustfaktor
θ	Elektrischer Drehwinkel
$\Theta_{\rm a}$	Temperatur Kühlmedium
$\Theta_{\mathrm{D,c}}$	Gehäusetemperatur bei der Diode
$\Theta_{\mathrm{D},j}$	Sperrschichttemperatur der Diode
$\Theta_{\rm h}$	Kühlkörpertemperatur
$\Theta_{\rm K}$	Maximale Temperatur des Kondensators
$\Theta_{\rm m}$	Magnetische Durchflutung
$\Theta_{\rm T,c}$	Gehäusetemperatur beim Transistor
$\Theta_{\mathrm{T},j}$	Sperrschichttemperatur des Transistors
φ	Phasenverschiebungswinkel zwischen Laststrom und -spannung
$\varphi_{\mathbf{k}}$	Phasenverschiebungswinkel des Kreisstroms
$\varphi_{\rm SN}$	Phasenverschiebungswinkel der Gleichtaktspannung
$\varphi_{\rm s}$	Phasenverschiebungswinkel der Phasenspannung
θ	Polradwinkel
\tilde{i}_{as}	Zeitvarianter Laststrom
$\tilde{i}_{\mathrm{ks}\nu}$	Harmonischer zeitvarianter Kreisstrom
$\tilde{i}_{ m ks}$	Zeitvarianter Kreisstrom
\tilde{i}_{Kzs}	Zeitvarianter Kondensatorstrom
$\widetilde{i}_{\mathrm{Z}}$	Zeitvarianter Zwischenkreisstrom
$\widetilde{p}_{\mathrm{zs}}$	Kumulierte zeitvariante Zweigleistung
$\widetilde{u}_{\mathrm{as}}$	Zeitvariante Lastspannung
$\widetilde{u}_{\mathrm{Kzs}}$	Kumulierte zeitvariante Zweigkondensatorspannung
$\widetilde{u}_{\mathrm{SN}}$	Zeitvariante Gleichtaktspannung
$\widetilde{u}_{\mathrm{zs}}$	Kumulierte zeitvariante Zweigspannung
$\widetilde{u}_{\mathrm{zZ}}$	Zeitvariante Zwischenkreisspannung
ξ	Wicklungsfaktor
$\zeta_{\rm L}$	Windungszahl der Zweigdrossel
$A_{\rm Fe}$	Querschnittsfläche des Eisenkerns
С	spezifische Wärmekapazität
$C_{\rm i}$	Wärmekapazität
$C_{\rm K}$	Kapazität des einzelnen Kondensators
$C_{\rm SM}$	Submodulkapazität
$F_{\rm rel}$	Relativer Regressionsfehler
H_1	Magnetische Feldstärke des umwickelten Schenkels
H_2	Magnetische Feldstärke des äußeren Schenkels

H_3	Magnetische Feldstärke des Jochs
H_{δ}	Magnetische Feldstärke des Luftspalts
$I_{\rm as}$	Zeitinvarianter Laststrom
$I_{\rm C}$	Kollektorstrom des Transistors
$i_{\rm C}$	Zeitabhängiger Kollektorstrom
$I_{\rm F}$	Diodenstrom
$i_{\rm F}$	Zeitabhängiger Diodenstrom
$I_{\rm ks}$	Zeitinvarianter Kreisstrom
$i_{\rm ks}$	Kreisstrom
$I_{\rm Kzs}$	Zeitinvarianter Kondensatorstrom
$i_{\rm Kzs}$	Zweigkondensatorstrom
$i_{\rm Lzs}$	Strom durch die Zweigdrossel
$i_{\rm zs}$	Zweigstrom
$I_{\rm Z}$	Zeitinvarianter Zwischenkreisstrom
k	Zähloperator
k_{Mod}	Modulationsgrad
$K_{\rm S}$	Faktor der Fehlerverstärkung
$K_{\rm uD}$	Exponent des Spannungsverhältnisses der Ausschaltverluste der Diode
$K_{\rm uT}$	Exponent des Spannungsverhältnisses der Ein- und Ausschaltverluste des Transistors
L	Zweiginduktivität
l_{δ}	Länge des Luftspalts
$L_{\rm dd}, L_{\rm dd}$	Differentielle Induktivitäten in der d- und q-Achse
$L_{\rm dq}, L_{\rm qd}$	Differentielle Induktivitäten zwischen d- und q-Achse
$l_{\rm H}$	Horizontale Länge des Eisenkerns
$L_{\rm L}$	Differentielle Induktivität der Zweigdrossel
L_{\max}	Maximale Zweiginduktivität
$L_{\rm pn}, L_{\rm np}$	Differentielle Koppelinduktivitäten der Zweigdrossel
$L_{\rm pp}, L_{\rm nn}$	Differentielle Hauptinduktivitäten der Zweigdrossel
$l_{\rm V}$	Vertikale Länge des Eisenkerns
L_{zZ}	Zwischenkreisinduktivität des positiven oder negativen Zweiges
$L_{\rm Z}$	Gesamtwert der Zwischenkreisinduktivitäten
M_{δ}	Luftspaltmoment
$m_{\rm off}$	Zähler der Ausschaltpulse der Diode
$M_{\rm on}$	Anzahl der Ausschaltpulse der Diode
$M_{\rm v}$	Verlustdrehmoment
$n_{\rm m}$	Mechanische Drehzahl
$N_{\rm off}$	Anzahl der Ausschaltpulse des Transistors

$n_{\rm off}$	Zähler der Ausschaltpulse des Transistors
$N_{\rm on}$	Anzahl der Einschaltpulse des Transistors
non	Zähler der Einschaltpulse des Transistors
$P_{\rm D,cond}$	Durchlassverluste der Diode
$P_{\rm D,off}$	Ausschaltverluste der Diode
$P_{\rm D}$	Gesamtverluste der Diode
$P_{\rm j}$	Zeitinvariante Terme der Zweigleistung
p_{j}	Zeitvariante Terme der Zweigleistung
$P_{\mathrm{T,cond}}$	Durchlassverluste des Transistors
$P_{\mathrm{T,off}}$	Ausschaltverluste des Transistors
$P_{\rm T,on}$	Einschaltverluste des Transistors
P_{T}	Gesamtverluste des Transistors
$P_{\rm v,D}$	Dielektrische Verlustleistung des Kondensators
$P_{\rm v,K}$	Kondensatorverlustleistung
$P_{\rm v,pm}$	Magnetverlustleistung
$P_{\rm v,R}$	Ohmsche Verlustleistung des Kondensators
$P_{\rm v,r}$	Reibungs- und Ventilationsverlustleistung
$P_{\rm zs}$	Kumulierte zeitinvariante Zweigleistung
$p_{\rm zs}$	Kumulierte Zweigleistung
$P_{\rm Z}$	Zwischenkreisleistung
R	Zweigwiderstand
$R_{\rm ESR}$	Äquivalenter Serienersatzwiderstand des Kondensators
$R_{\rm ha}$	Thermischer Widerstand Kühlkörper zu Kühlmedium
$R_{\mathrm{i},\alpha}$	Wärmeübergangswiderstand
$R_{\mathrm{i},\lambda}$	Wärmeleitwiderstand
$R_{\rm i}$	Thermischer Widerstand
$R_{\rm m,1}$	Magnetischer Widerstand des umwickelten Schenkels
$R_{\rm m,2}$	Magnetischer Widerstand des äußeren Schenkels
$R_{\rm m,3}$	Magnetischer Widerstand des Jochs
$R_{\mathrm{m},\delta}$	Magnetischer Widerstand des Luftspalts
$R_{\rm m}$	Magnetischer Widerstand
$R_{\rm S}$	Serienersatzwiderstand des Kondensators
$R_{\rm T,ch}$	Thermischer Widerstand Gehäuse zu Kühlkörper bei der Diode
$R_{\rm T,ch}$	Thermischer Widerstand Gehäuse zu Kühlkörper beim Transistor
$R_{\rm T,jc}$	Thermischer Widerstand Sperrschicht zu Gehäuse bei der Diode
$R_{\rm T,jc}$	Thermischer Widerstand Sperrschicht zu Gehäuse beim Transistor
$R_{\rm th}$	Thermischer Widerstand des Kondensators
R_{zZ}	Zwischenkreiswiderstand des positiven oder negativen Zweiges

$R_{\rm Z}$	Gesamtwert der Zwischenkreiswiderstände
$S_{\rm CE}$	Approximationsfehler der Kollektor-Emitter-Spannung
$S_{\rm F}$	Approximationsfehler der Diodendurchlassspannung
$S_{\rm off}$	Approximationsfehler der Transistorausschaltenergie
$S_{\rm on}$	Approximationsfehler der Transistoreinschaltenergie
$S_{\rm rec}$	Approximationsfehler der Diodenausschaltenergie
$S_{\rm ZS}$	Schaltfunktion des Ersatzzweigmoduls
t_0	Anfangszeitpunkt
$T_{\rm PWM}$	Zeitdauer einer PWM-Periode
U_0	Konstanter Spannungsabfall
U_{Δ}	Kondensatorrippelspannung
$U_{\rm as}$	Zeitinvariante Lastspannung
$U_{\rm CE,D}$	Datenpunkte der Kollektor-Emitter-Spannung
$U_{\rm CE, Interp}$	Interpolierte Kennlinie der Kollektor-Emitter-Spannung
$U_{\rm CE}$	Kollektor-Emitter-Spannung
$u_{\rm C}$	Zeitabhängige Kollektor-Emitter-Spannung
$u_{\rm Ds}$	Spannungsabfall Zweiginduktivität und -widerstand
$U_{\rm F,D}$	Datenpunkte der Durchlasskennlinie der Diode
$U_{\rm F,Interp}$	Interpolierte Durchlasskennlinie der Diode
$U_{\rm F}$	Durchlassspannung der Diode
$u_{\rm F}$	Zeitabhängige Diodenspannung
$U_{\rm K,N}$	Kondensatornennspannung
$u_{\rm K,SM}$	Kondensatorspannung des Submoduls
$U_{\rm Kzs}$	Kumulierte zeitinvariante Zweigkondensatorspannung
$u_{\rm Kzs}$	Kumulierte Zweigkondensatorspannung
$u_{\rm Lzs}$	Spannungsabfall an der Zweiginduktivität
$u_{\rm LzZ}$	Spannungsabfall an der Zwischenkreisinduktivität
$U_{\rm pn}$	Gesamtspannung des Zwischenkreises
$u_{\rm Rzs}$	Spannungsabfall am Zweigwiderstand
$u_{\rm RzZ}$	Spannungsabfall am Zwischenkreiswiderstand
$U_{\rm r}$	Konstante Spannungsreserve
$U_{\rm SN}$	Zeitinvariante Gleichtaktspannung
$U_{\rm Z,min}$	Minimale Zwischenkreisspannung
$u_{\rm zs,min}$	Minimale Zweigspannung
$U_{\rm zs}$	Kumulierte zeitinvariante Zweigspannung
$u_{\rm zs}$	Kumulierte Zweigspannung
$U_{\rm zZ}$	Zeitinvariante Zwischenkreisspannung des jeweiligen Zweiges
$W_{\rm off,D}$	Datenpunkte der Ausschaltenergie des Transistors

$W_{\rm off,Interp}$	Interpolierte Kennlinie Ausschaltenergie des Transistors
$W_{\rm off}$	Ausschaltenergie des Transistors
$W_{\rm on,D}$	Datenpunkte der Einschaltenergie des Transistors
$W_{\rm on,Interp}$	Interpolierte Kennlinie der Einschaltenergie des Transistors
$W_{\rm on}$	Einschaltenergie des Transistors
$W_{\rm rec,D}$	Datenpunkte der Ausschaltenergie der Diode
$W_{\rm rec,Interp}$	Interpolierte Kennlinie der Ausschaltenergie der Diode
$W_{\rm rec}$	Ausschaltenergie der Diode
$w_{\rm zs}$	Kumulierte Zweigenergie
$Z_{\rm p}$	Polpaarzahl
$Z_{\rm SM}$	Anzahl der Submodule je Zweig

Abkürzungen

AC	Alternating Current
AMP	Strommessplatine
ANLM	Averaging Nearest Level Modulation
ANPCML	Active Neutral Point Clamped Multilevel
ANPC	Active Neutral Point Clamped
APOC	Alternative Phase Opposition Carrier
ARM	Advanced RISC Machines
ASNPC	Active Stacked Neutral Point Clamped
CAN	Controller Area Network
CHB	Cascaded H-Bridge
\mathcal{CM}	Common Mode
CSI	Current Source Inverter
DC	Direct Current
DD	Direct Drive
DFIG	Doubly Fed Induction Generator
DM	Differential Mode
DUT	Device Under Test
EESG	Electrically Excited Synchronous Generator
eM	Elektrische Maschine
\mathbf{FFT}	Fast Fourier Transform
FL-LSC	Full Load Line Side Converter
FL-MSC	Full Load Machine Side Converter
FLC	Flying Capacitor
FL	Full Load

FPGA	Field-Programmable Gate Array
GD	Geared Drive
GEN	Generator
HGÜ	Hochspannungs-Gleichstrom-Übertragung
ΗT	Hybride Topologie
HVAC	High Voltage Alternating Current
HVDC	High Voltage Direct Current
IGBT	Insulated Gate Bipolar Transistor
IGCT	Integrated Gate-Commutated Thyristor
LSC	Line Side Converter
Lsg	Lösung
LV	Low Voltage
LWL	Lichtwellenleiter
M2C	Modularer Mehrpunktstromrichter
MOSFET	Metal Oxide Semiconductor Field-Effect Transistor
MPC	Multi Point Clamped
MSC	Machine Side Converter
MVAC	Medium Voltage Alternating Current
NLM	Nearest Level Modulation
NPC	Neutral Point Clamped
NPP	Neutral Point Piloted
NP	Neutralpunkt
PC	Personal Computer
PDC	Phase Disposition Carrier
PEBB	Power Electronic Building Block
PH	Phase
PL-LSC	Part Load Line Side Converter
PL-MSC	Part Load Machine Side Converter
PL	Part Load
PMSG	Permanent Magnet Synchronous Generator
PMSM	Permanent Magnet Synchronous Machine
POC	Phase Opposition Carrier
PSC	Phase Shifted Carrier
PWM	Pulsweitenmodulation
SCIG	Squirrel Cage Induction Generator
SG	Synchronous Generator
SMC	Stacked Multi-Cell
SM	Submodul

XIV

SNPC	Stacked Neutral Point Clamped
SoC	System-on-a-Chip
SP	Sternpunkt
SÜ	Systemüberwachung
TCC	Transistor Clamped Converter
TSP	Treiberschnittstellenplatine
UART	Universal Asynchronous Receiver Transmitter
VMP	Spannungsmessplatine
VSC	Voltage Source Converter
WQN	Wärmequellennetz
ZS	Zentrale Steuerung

Matrizen

Λ	Matrix der Leitwerte
ψ	Matrix des magnetischen Flusses
Θ	Matrix der Temperaturen
\boldsymbol{A}	Matrix der Kondensatorspannungsterme
В	Matrix der Zweigstrom- und Spannungsterme
$i_{ m a}$	Matrix des Strangstroms der PMSM
i	Matrix der Zweigströme
M_1	Induktivitätsmatrix
M_2	Widerstandsmatrix
M_3	Faktormatrix
M_4	Induktivitätsmatrix der Schaltfunktionsgleichungen
M_5	Widerstandsmatrix der Schaltfunktionsgleichungen
M_6	Faktormatrix der Schaltfunktionsgleichungen
M_7	Induktivitätsmatrix der Kondensatorspannungsgleichungen
M_8	Widerstandsmatrix der Kondensatorspannungsgleichungen
M_9	Faktormatrix der Kondensatorspannungsgleichungen
Ρ	Matrix der Verlustleistungen
s	Matrix der Schaltfunktionen
$T_{ m C}$	Clarke Transformationsmatrix
U_{δ}	Matrix der Luftspaltspannung der PMSM
U_{a}	Matrix der Strangspannung der PMSM
$u_{ m K}$	Matrix der Kondensatorspannungen
\boldsymbol{u}	Matrix der Last-, Zwischenkreis- und Gleichtaktspannungen

Indizes

*	Sollwert
0	Anfangswert oder -bedingung
α	Auf $\alpha\text{-}\mathrm{Achse}$ projizierte Größe
β	Auf β -Achse projizierte Größe
χ	Umrechnungsexponent der Reibungs- und Ventilationsverluste
δ	Luftspaltbezogene Größen
ν	Ordnungszahl
ψ	Auf Magnetfluss bezogene Größe
А	Asymmetrisch
a	Lastgrößen
CE	Kollektor-Emitter Größe
d	Auf d-Achse projizierte Größe
fe	Auf Elektroblech bezogene Größe
fs	Auf Feldschwächung bezogene Größe
F	Auf Diode bezogene Größe
i	Interne Umrichtergrößen
j	Zähler der Ergebnisterme
К	Kondensatorgrößen
k	Auf den Kreisstrom bezogene Größe
Lin	Linearer Ansatz
L	Induktive Größen
1	Zeitlich lineare Größen
m	Mechanische Größe
n	Negativer Zweig
pm	Auf Permanent Magnet bezogene Größe
Poly, 2	Polynomansatz zweiter Ordnung
Poly, 3	Polynomansatz dritter Ordnung
Pot	Potenzfunktion
р	Positiver Zweig
q	Auf q-Achse projizierte Größe
ref	Referenz
R	Ohmsche Widerstandsgrößen
r	Auf Reibung bezogene Größe
r	Reibung und Ventilation
s+	Allgemeiner Platzhalter der nachfolgenden Phase
s-	Allgemeiner Platzhalter der vorherigen Phase

SM	Auf ein Submodul bezogene Größe
SN	Gleichtaktgrößen
S	Symmetrisch
s	Allgemeiner Platzhalter für die Phasen U, V und W
U, V, W	Größen der jeweiligen Phase
V	Verlustterm
W	Zeitliche Wechselgrößen
Z	Zwischenkreisgrößen
Z	Allgemeiner Platzhalter für die Zweige p und n

Kurzfassung

Die vorliegende Arbeit thematisiert die Modellbildung und darauf aufbauend die Betriebsführung und Dimensionierung des modularen Mehrpunktstromrichters (M2C) als auch die messtechnische Überprüfung des entwickelten Regelungsverfahrens an einem Prüfstand. Durch die hohe Modularität des M2Cs wird dieser vorrangig für die Hochspannungs-Gleichstrom-Übertragung praktisch eingesetzt. Trotz der Restriktionen beim Betrieb mit einer geringen Betriebsfrequenz wird dieser Umrichtertyp aber auch als Antriebsumrichter verwendet. Hier sind vor allem Anwendungen geeignet, welche ein ansteigendes Drehmoment bei gleichzeitiger Erhöhung der Drehzahl fordern. Dies ist beispielsweise für Pumpen- oder Lüfteranwendungen der Fall. Da dazu vor allem auch Windkraftturbinen zählen, welche durch den Energiewandel zunehmend an Bedeutung gewinnen, wird dieser Anwendungsfall in der vorliegenden Arbeit als Beispiel für die Systemdimensionierung angeführt.

Die Entwicklung und Analyse der Betriebsstrategien basiert auf einem tiefen Verständnis der Systemeigenschaften. Gegenstand dieser Arbeit ist es deshalb im ersten Schritt ein vollständiges Modell des M2Cs mit einer allgemeinen Lastdefinition zu erarbeiten, mit welchem eine analytische Lösung der Systemgleichungen für den stationären Fall möglich ist. Durch die analytische Ermittlung der einzelnen Lösungsterme wird eine Festlegung von zielspezifischen Auslegungskriterien sowie von optimalen Betriebsstrategien erreicht. Die allgemein verwendeten Formulierungen und die Darstellungen durch Einzelterme können weiterhin die Wirkmechanismen und deren Wechselwirkungen umfassend aufzeigen. Mittels der allgemeinen Lastdefinition wird des Weiteren die Möglichkeit aufgezeigt, ein sättigungsabhängiges Maschinenmodell auf Basis von Finite Elemente Simulationen in die Lösung der Gleichungen zu integrieren. Die Modellgleichungen erlauben ebenfalls eine einfache Vorausberechnung und damit die Optimierung der Spannungsaussteuerung der Zweige, woraus eine höhere Ausnutzung der Kondensatorspannung resultiert.

Auf Basis der analytischen Modellbildung wird im Weiteren ein Regelungsverfahren vorgestellt, welches modellbasiert die Eingangsgrößen des Energiereglers festlegt und damit eine hohe Stabilität erreicht. Die Trennung der Umrichter- und Lastregelung führt gleichzeitig zu einer entkoppelten und dynamischen Ansteuerung der Drehstrommaschine. Es handelt sich dabei um eine kaskadierte Regelungsstruktur durch welche höherfrequente Kreisstromformen sowie die Gleichtaktspannung vorgegeben werden können, um eine Minimierung der Kondensatorspannungsbelastung zu erreichen. Die optimierten Zweigströme und die entsprechende Gleichtaktspannung können durch das allgemeine Umrichtermodell vorab ermittelt werden.

Die Anwendung der Modellgleichungen wird folglich am Beispiel des elektrischen Triebstrangs für eine Windkraftanlage gezeigt und gleichzeitig darauf hingewiesen,

welche Systemoptimierungen möglich sind, wenn die elektrische Drehstrommaschine in den Parameterraum miteinbezogen wird. Im Gegensatz zur numerischen Lösung der Gleichungssysteme bieten die analytischen Lösungen den Vorteil einer geringeren Rechenzeit, wodurch eine aufwendige Systemuntersuchung über den gesamten Betriebsbereich möglich wird. Damit werden die Einzelkomponenten des M2Cs, welche sich aus den Halbleitern, den Kondensatoren und Zweigdrosseln zusammensetzen, möglichst hoch ausgenutzt, um den Komponentenaufwand gering zu halten. Auf Basis von Finite Elemente Simulationen wird die Zweigdrossel im Detail betrachtet, um die Einflüsse von ge- bzw. entkoppelten Zweigdrosseln sowie der entsprechenden Wickelschemata aufzuzeigen.

Die Implementierung der Regelungs- und Ansteueralgorithmen in einer Niederspannungsmodellanlage des M2Cs belegt im Weiteren die Gültigkeit der aufgezeigten Modellgleichungen. Außerdem wird die Funktion der Regelungs- und Ansteueralgorithmen für verschiedene Betriebszustände sowohl mit einer Lastdrossel als auch einer Asynchronmaschine validiert.

Abstract

This thesis deals with the modeling, and based on that, with the control and design of the Modular Multilevel Converter (M2C) as well as the validation of the developed control concept on a test bench. Because of the high modularity, the M2C is mainly used for High-Voltage-Direct-Current applications. Despite the restrictions on low frequency operation, the M2C is used for electrical drive systems as well. For drive applications this converter type is especially suitable for loads with simultaneously increasing torque and speed characteristics. This is e.g. the case for pump and fan applications. Wind turbines, which are gaining popularity due to the challenges of the climate change, are having these characteristics too. Therefore, this application is used as an example for the proposed design strategy.

The development and analysis of the operation strategies are based on a fundamental insight in the system behavior. This is the reason why this thesis deals firstly with a full model of the M2C with a generally defined load model which allows for an analytical solution of the system equations for the stationary case. The determination of the respective system terms makes target orientated design criterias and optimized operation strategies possible. Furthermore, the usage of respective expressions leads to a detailed insight in the effects and interaction of the corresponding mechanisms. With the general load definition, it's possible to integrate a saturation model of the electrical machine into the system equations. In addition, the system model gives the possibility of optimizing the arm voltages, which results in highly utilized arm capacitors.

Based on the analytical model, a control scheme is demonstrated which gets the input parameters for the energy controller from the system equations and therefore allows for a high dynamic control of the electric machine. Separating the converter and load control gives the opportunity for a decoupled and dynamic control of the electric machine. This is based on a cascaded control scheme which uses circulating current harmonics and the common mode voltage as an input to minimize voltage ripples on the submodule capacitors. The optimized arm currents and the common mode voltage are determined by the general system model upfront.

The application of the system equations is shown on the electrical drivetrain of a wind turbine to demonstrate the possibility of system optimizations by considering the electrical machine in the parameter space. In contrast to a numerical simulation, the analytical approach gives the advantage of saving time and allows consequently for a general investigation on the system level over the entire operating range. With this the specific components of the M2C, which are the semiconductors, the capacitors and the arm inductors, are highly utilized to save costly components. Following, the arm inductors are calculated based on finite element simulations which shows

the impact of coupled and decoupled arm inductors and various winding schemes. The implementation of the control and drive algorithms on a low voltage M2C prototype proves the demonstrated solution of the system equations. Despite that the control and drive algorithms are tested for various operation scenarios with an inductive load and an asynchronous machine.

https://doi.org/10.51202/9783186424211-I Generiert durch IP '3.145.111.107', am 13.05.2024, 01:53:20. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig