Fortschritt-Berichte VDI

VDI

Reihe 1

Konstruktionstechnik/ Maschinenelemente

M.-Eng. Stephan Ritzer, Rennertshofen

Nr. 447

Berechnung von Vierpunkt-Großwälzlagern mittels eines Mehrkörpersimulationsansatzes unter Berücksichtigung der Lagerringverformung

Berichte aus dem Institut für Maschinenelemente, Konstruktion und Fertigung der Technischen Universität Bergakademie Freiberg

Generiert durch IP '3.129.218.144', and the second second

https://doi.org/10.51202/9783186447012-I Generiert durch IP '3.129.218.144', am 16.05.2024, 02:43:54. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig.

Berechnung von Vierpunkt-Großwälzlagern mittels eines Mehrkörpersimulationsansatzes unter Berücksichtigung der Lagerringverformungen

Von der Fakultät für Maschinenbau, Verfahrens- und Energietechnik der Technischen Universität Bergakademie Freiberg genehmigte

Dissertation

zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)

vorgelegt

von geboren am M.-Eng. Ritzer Stephan 10. März 1982 in Donauwörth

Gutachter: Prof. Dr.-Ing. Matthias Kröger, TU Freiberg Prof. Dr.-Ing. Thomas Suchandt, TH Ingolstadt

Tag der Verleihung: 05.02.2018

https://doi.org/10.51202/9783186447012-I Generiert durch IP '3.129.218.144', am 16.05.2024, 02:43:54. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig.

Fortschritt-Berichte VDI

Reihe 1

Konstruktionstechnik/ Maschinenelemente M.-Eng. Stephan Ritzer, Rennertshofen

Nr. 447

Berechnung von Vierpunkt-Großwälzlagern mittels eines Mehrkörpersimulationsansatzes unter Berücksichtigung der Lagerringverformung

Berichte aus dem Institut für Maschinenelemente, Konstruktion und Fertigung der Technischen Universität Bergakademie Freiberg

Ritzer, Stephan

Berechnung von Vierpunkt-Großwälzlagern mittels eines Mehrkörpersimulationsansatzes unter Berücksichtigung der Lagerringverformung

Fortschr.-Ber. VDI Reihe 1 Nr. 447 . Düsseldorf: VDI Verlag 2018. 144 Seiten, 127 Bilder, 32 Tabellen. ISBN 978-3-18344701-5 ISSN 0178-949X, € 52,00/VDI-Mitgliederpreis € 46,80.

Für die Dokumentation: Vierpunkt-Großwälzlager – Kugeldrehverbindung – Simulation von Wälzkörperkräften – Mehrkörpersimulation

In der vorliegenden Arbeit werden heutzutage übliche Lagerberechnungsansätze in Hinsicht auf die Berechnung von Vierpunkt-Großwälzlagern untersucht. Eine nähere Betrachtung zur statischen Tragfähigkeit, Steifigkeit, Lebensdauer und zum Reibmoment zeigte, dass Berechnungsansätze, die auf Basis der einzelnen Wälzkörperkräfte aufbauen, besser für Vierpunkt-Großwälzlager geeignet sind. Ein wichtiger Faktor zur Bestimmung der einzelnen Wälzkörperkräfte ist die Betrachtung der Verformungen der Lagerringe sowie die Kippmomenten-Belastung. Schwerpunkt in der Arbeit liegt in der Entwicklung eines Berechnungsansatzes, der mit einem geringen Rechenaufwand möglichst exakt die einzelnen Wälzkörperkräfte berechnet. Als Grundlage hierfür wird die Mehrkörpersimulation verwendet. An einem Beispiel aus der Praxis wird der neu entwickelte Berechnungsansatz aufgezeigt. Reale Versuche an einem Großwälzlagerprüfstand sichern die Berechnungsergebnisse ab.

Bibliographische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet unter www.dnb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek

(German National Library) The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie (German National Bibliography); detailed bibliographic data is available via Internet at www.dnb.de.

Dissertation TU Bergakademie Freiberg

© VDI Verlag GmbH · Düsseldorf 2018

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe (Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung, vorbehalten.

Als Manuskript gedruckt, Printed in Germany. ISSN 0178-949X ISBN 978-3-18-344701-5

> https://doi.org/10.51202/9783186447012-I Generiert durch IP '3.129.218.144', am 16.05.2024, 02:43:54. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig.

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Zentrum für Angewandte Forschung der Technischen Hochschule Ingolstadt. Die Promotion wurde im Verbund mit dem Institut für Maschinenelemente, Konstruktion und Fertigung der Technischen Universität Bergakademie Freiberg ausgeführt.

Für die Übernahme der Aufgabe des Doktorvaters, sowie die Unterstützung und auch für das Interesse an diesem Thema gilt mein besonderer Dank Herrn Prof. Dr.-Ing. Matthias Kröger von der Technischen Universität Bergakademie Freiberg.

Einen weiteren Dank möchte ich Herrn Prof. Dr.-Ing. Thomas Suchandt von der Technischen Hochschule Ingolstadt aussprechen. Einerseits für die Übernahme des Zweitgutachters, aber auch für die gute fachliche Betreuung. Besonders dankbar bin ich ihm für die mir gewährten Freiheiten zur Fertigstellung dieser Arbeit, sowie auch für die grundsätzliche Möglichkeit, dass ich diese Arbeit durchführen konnte.

Außerdem danke ich den Professoren der Technischen Universität Bergakademie Freiberg, die zusätzlich in der Prüfungskommission dieser Dissertation tätig waren.

Ein ganz besonderer Dank gilt meinem Industriepartner, der Firma WMH Herion Antriebstechnik GmbH in Wolnzach mit Herrn Prof. Claude Herion an der Spitze des Unternehmens. Mein Dank geht auch an die Kollegen der Firma WMH Herion Antriebstechnik GmbH für die kollegiale Zusammenarbeit, sowie für die gute Unterstützung.

Weiterhin danke ich allen Kollegen am Zentrum für Angewandte Forschung der Technischen Hochschule Ingolstadt. Namentlich möchte ich hier Herrn Leonid Koval und Herrn Christoph Dütsch nennen. Vielen Dank an die Studenten, die mit ihren studentischen Arbeiten einen Teil zur Entstehung dieser Arbeit beigetragen haben.

Danken möchte ich den Mitarbeitern am Institut für Maschinenelemente, Konstruktion und Fertigung der Technischen Universität Bergakademie Freiberg, die mir unter anderem Unterlagen zum Ablauf der Promotion und den erforderlichen Prüfungen zur Verfügung gestellt haben.

Herzlicher Dank gilt auch den Kollegen, Verwandten und Freunden, die die Aufgabe des Korrekturlesens dieser Arbeit übernommen haben. Namentlich möchte ich hier Frau Marion Stasch nennen.

Rennertshofen, den 05.02.2018

Ritzer Stephan

Inhaltsverzeichnis

Forn	nelverz	eichnis	VII	
Kurz	zfassun	g	XIII	
Abst	ract		XIV	
1	Einle	itung	1	
	1.1	Allgemeines	1	
	1.2	Einsatzfälle	5	
	1.3	Literatur zum heutigen Stand der Forschung	6	
	1.4	Zielsetzung	9	
2	Anal	yse und grundlegende Betrachtungen	11	
	2.1	Eingesetzter Prüfaufbau zur Analyse der Berechnungsverfahren	12	
	2.2	Hertz'sche Theorie	13	
	2.3	Statische Tragfähigkeit		
	2.4	Lagersteifigkeit	18	
		2.4.1 Einfluss der Lagerringverformung auf die Lagersteifigkeit .	20	
		2.4.2 Versuchsergebnisse zur Nachgiebigkeit des Großwälzlagers .	24	
	2.5	Lagerlebensdauer	25	
	2.6	Lagerreibung		
		2.6.1 Stand der Technik zur Berechnung des Reibmomentes	27	
		2.6.2 Versuchsergebnisse	29	
		2.6.3 Analyse der Berechnung des Reibmomentes	31	
		2.6.4 Herleitung eines Berechnungsmodells basierend auf den ein	33	
		zelnen Wälzkörperbelastungen		
	2.7	Iterativer Berechnungsansatz zur Ermittlung der Wälzkörperkräfte	36	
3	Entw	vicklung des Simulationsansatzes	42	
	3.1	Aufbau der Simulation mittels Mehrkörpersimulation	44	
		3.1.1 Simulation des Steifigkeitsverhaltens am Wälzkontakt	45	
		3.1.2 Geometrische Kontur der Lagerringe und Wälzkörper	48	
		3.1.3 Berücksichtigung der Elastizität der Lagerringe	49	

		3.1.4 Berücksichtigung der Änderung der Lage des Kontaktpunk	52		
		tes Wälzkörper zur Laufbahn			
	3.2	2 Berechnungsablauf			
	3.3	Allgemeine Betrachtungen der Verformungen der Lagerringe	56		
	3.4	Vier-Kugel-Modell	63		
		3.4.1 Erarbeitung der Anzahl und Lage der Masterpunkte	65		
		3.4.2 Vergleich der Simulationsergebnisse	72		
	3.5	Vereinfachtes Lagermodell	74		
	3.6	6 Numerische Stabilisierung der Wälzkörper durch Federelemente			
	3.7	Auswertung der Wälzkörperbelastungen	80		
	3.8	Simulation Großwälzlager	81		
		3.8.1 Anbindung und Berücksichtigung der Anschlusskonstruktion.	83		
		3.8.2 Bestimmung der simulationstechnischen Parameter	85		
		3.8.3 Anbindung der Krafteinleitung	87		
		3.8.4 Simulation des Steifigkeitsverhaltens	88		
		3.8.5 Simulation der Wälzkörperkräfte	91		
4	Ges	samtsimulation am Praxisbeispiel	93		
	4.1	Beschreibung des Praxisbeispiels	93		
	4.2	Bestimmung der Simulationsparameter	97		
	4.3	Aufbau, Durchführung und Validierung der Simulation	98		
	4.4	Anwendung der Wälzkörperkräfte auf lagerrelevante Berechnungen .	100		
5	Zusammenfassung und Ausblick		111		
Anha	ng		115		
	Α	Abmessungen Blattlager	115		
	В	Theoretische Berechnung der Lagerringverschiebung	116		
	С	Reibmoment	117		
	D	Großwälzlager	118		
E Mittlerer Steifigkeitsfaktor am Wälzkontakt					
Liter	aturv	verzeichnis	121		

Formelverzeichnis

Selten benutzte Formelzeichen sind ausschließlich im Text erläutert.

Lateinische Notation

A	mm ²	Fläche
$a_1, a_2, a_3 - a_k$	-	Faktoren für die Lebensdauer von Wälzlagern
a_4	-	Life Modification Factor for Flexible Support Structure
$b_{\rm m}$	-	Faktor zur Bestimmung der dynamischen Tragzahl
C_{a}	Ν	dynamische Tragzahl
$C_{\mathrm{a,h}}$	Ν	reduzierte dynamische Tragzahl bzgl. des Härteeinflusses
C_{\max}	Ns/mm	Dämpfungskoeffizient am Kontakt
C_0	Ν	statische Tragzahl
D_{A}	mm	Lageraußendurchmesser
D_{Aa}	mm	Durchmesser des Lageraußenringes am Außendurchmesser
D_{Ai}	mm	Durchmesser des Lageraußenringes am Innendurchmesser
D_{I}	mm	Lagerinnendurchmesser
D_{Ia}	mm	Durchmesser des Lagerinnenringes am Außendurchmesser
D_{Ii}	mm	Durchmesser des Lagerinnenringes am Innendurchmesser
$D_{\rm pw}$	mm	Teilkreisdurchmesser
D_{w}	mm	Wälzkörperdurchmesser
$D_{\rm w,neu}$	mm	korrigierter Wälzkörperdurchmesser
e	-	Exponent der Kontaktsteifigkeit
E	N/mm ²	E-Modul
F	Ν	allgemein Belastung
Fa	Ν	Axialkraft
\mathbf{f}_{cm}	-	geometrischer Hilfswert zur Berechnung der dynamischen
		Tragzahl
\mathbf{f}_{H}	-	Minderungsfaktor bezüglich der Härte für Lebensdauer
F_k	Ν	Wälzkörperkraft bzw. Kontaktkraft am Wälzkontakt

$F_{k,a}$	Ν	Wälzkörperkraft aufgrund axialer Belastung
$F_{k,i}$	Ν	Kontaktkraft am Wälzkontakt eines einzelnen Wälzkörpers i
$F_{k,max}$	Ν	maximale Wälzkörperkraft
$F_{\rm kr}$	Ν	radiale Komponente der Kräfte am Wälzkontakt
$F_{\rm kres,i}$	Ν	resultierende Belastung eines einzelnen Wälzkörpers i
F _{k,tat}	Ν	tatsächliche Wälzkörperkraft
$F_{\rm kx,i}$	Ν	Belastungskomponente eines einzelnen Wälzkörpers i in
		x-Richtung
$F_{\rm ky,i}$	Ν	Belastungskomponente eines einzelnen Wälzkörpers i in
		y-Richtung
$F_{\rm kz,i}$	Ν	Belastungskomponente eines einzelnen Wälzkörpers i in
		z-Richtung
$F_{\rm r}$	Ν	Radialkraft
Fres	Ν	resultierende Lagerkraft
<i>f</i> _s	-	Abminderungsfaktor für die Härte des Werkstoffes in der
		statischen Tragfähigkeit
$F_{\mathbf{x}}$	Ν	Radialkraft in x-Richtung
F_{y}	Ν	Radialkraft in y-Richtung
G_{a}	mm	Axialspiel
$G_{\rm r}$	mm	Radialspiel
Н	mm	Höhe des Wälzlagers
HV	-	Härte in Vickers
$K_{\rm A}$	N/mm ^{1,5}	mittlerer Steifigkeitsfaktor am Wälzkontakt
K _{Aa}	N/mm ^{1,5}	Steifigkeitsfaktor am Wälzkontakt Außenring zu Wälzkörper
$K_{\rm Ai}$	N/mm ^{1,5}	Steifigkeitsfaktor am Wälzkontakt Innenring zu Wälzkörper
$k_{ m ij}$	1/mm	Kehrwert der Krümmung am Wälzkontakt i=1,2; j=1,2
L_{10}	Umdr.	nominelle Lebensdauer in Umdrehungen
L_{10h}	Std.	Lebensdauer in Stunden
$M_{\rm k}$	Nm	Kippmoment
MKS	-	Mehrkörpersimulation
$M_{\rm R}$	Nm	Lagerreibmoment
$M_{\rm Ra}$	Nm	Lagerreibmomentanteil aufgrund der axialen Belastung
$M_{ m Rk}$	Nm	Lagerreibmomentanteil aufgrund der Kippmomentenbelastung
$M_{ m Rl}$	Nm	lastabhängiges Reibmoment
$M_{ m R0}$	Nm	Lagerreibmoment ohne Belastung
$M_{ m Rr}$	Nm	Lagerreibmomentanteil aufgrund der radialen Belastung
$M_{\rm x}$	Nm	Kippmoment um x-Achse
$M_{\rm v}$	Nm	Kippmoment um y-Achse

$M_{\rm z}$	Nm	Drehmoment des Wälzlagers zum Schwenken
N	Osz./min	Oszilationsgeschwindigkeit der Lagerschwenkbewegung
n	-	Anzahl der Laufbahnen
n _m	U/min	mittlere Wälzlagerdrehzahl
$n_{m,i}$	U/min	mittlere Wälzlagerdrehzahl eines einzelnen Belastungszyklus
0	0	Oszilationsamplitude der Lagerschwenkbewegung
Ocrit	0	kritische Oszilationsamplitude der Lagerschwenkbewegung
р	N/mm ²	Flächenpressung
р	-	Exponent zur Bestimmung der dynamischen äquivalenten Be-
		lastung
P_{ea}	Ν	dynamische äquivalente Belastung
Pea,i	Ν	dynamische äquivalente Belastung eines einzelnen Belastungs-
		zyklus
$p_{\rm max}$	N/mm ²	maximale vorhandene Hertz'sche Pressung
$p_{\rm max,zul}$	N/mm ²	maximale zulässige Hertz'sche Pressung
$p_{\rm max,zul,norm}$	N/mm ²	maximale zulässige Hertz'sche Pressung nach Norm
P_0	Ν	statisch äquivalente Belastung
r	mm	Radius allgemein
r _A	mm	Rillenradius der Laufbahn am Lageraußenring
R _A	mm	Krümmungsradius der Laufbahn im Axialschnitt am Wälzlager-
		außenring
r _I	mm	Rillenradius der Laufbahn am Lagerinnenring
R _I	mm	Krümmungsradius der Laufbahn im Axialschnitt am Wälzlager-
		innenring
r _{ij}	mm	Radien am Wälzkontakt i=1,2; j=1,2
R _{j,i}	mm	Abstand der Mittelpunkte der Laufbahnkrümmungen eines
		Wälzkörpers
R_0	mm	Abstand der Mittelpunkte der Krümmungsradien im unbelas-
		teten Zustand
$R_{\rm w}$	mm	Wälzkörperradius
S	Ns/mm	Funktion zur Beschreibung der Abhängigkeit des Dämpfungs-
		verhaltens am Kontakt
S	kN/mm	Steifigkeit allgemein
Sa	kN/mm	Axiale Steifigkeit
S_k	kNm/mrad	Kippsteifigkeit
s ₀	-	Kennzahl zur statischen Beanspruchung
S0,Fk	-	Kennzahl zur statischen Beanspruchung anhand der maximal
		auftretenden Wälzkörperbelastung

S _{0,Hertz}	-	Kennzahl zur statischen Beanspruchung anhand der maximal
		auftretenden Hertz`schen Pressung
$\mathbf{S}_{\mathbf{r}}$	kN/mm	Radiale Steifigkeit
ti	-	Zeitanteil eines einzelnen Belastungszyklus
T _R	Nm	Reibmoment allgemein
Ts	mm	Schalendicke der Zwischenelemente
uj	-	Überrollungen des Lagerringes bei einer Wälzlagerumdrehung
u _x	mm	Verschiebung der Lagerringe zueinander in x-Richtung
uy	mm	Verschiebung der Lagerringe zueinander in y-Richtung
uz	mm	Verschiebung der Lagerringe zueinander in z-Richtung
Х	-	Radialfaktor für die dynamische äquivalente Belastung
х	mm	Abstand zweier Kontaktkörper unter Belastung
ż	mm/s	Aufprall- bzw. Eindringgeschwindigkeit zweier Kontaktkörper
$X_{Aj,i},Y_{Aj,i},Z_{Aj}$	_i mm	Koordinaten der Mittelpunkte der Laufbahnkrümmungen des Außenringes am Wälzkontakt in x-, y- und z-Richtung
X _{AO,i} , X _{AU,i}	-	x-Koordinate der Masterpunkte der einzelnen Wälzkörper
$X_{Ij,i},Y_{Ij,i},Z_{Ij,i}$	mm	Koordinaten der Mittelpunkte der Laufbahnkrümmungen des
		Innenringes am Wälzkontakt in x-, y- und z-Richtung
X_0	-	Radialfaktor für die statisch äquivalente Belastung
X ₀	mm	Abstand zweier Kontaktkörper ohne Belastung
$Y_{AO,i}, X_{AU,i}$	-	y-Koordinate der Masterpunkte der einzelnen Wälzkörper i
Y	-	Axialfaktor für die dynamische äquivalente Belastung
Y_0	-	Axialfaktor für die statisch äquivalente Belastung
Z	-	Wälzkörperanzahl
Z_{AO}, Z_{AU}	-	z-Koordinate der Masterpunkte

Griechische Notation

α	0	Betriebsdruckwinkel
α_0	0	Nenndruckwinkel
α_i	0	Betriebsdruckwinkel eines bestimmten Wälzkörpers
γ	-	Beiwert zur Bestimmung des geometrischen Hilfswertes zur
		Berechnung der dynamischen Tragzahl
$cos \tau$	-	Hilfsbeiwert zur Bestimmung der Hertz`schen Beiwerte
δ	mm	Betrag der Annäherung der Kontaktpartner
δ_{A}	mm	Betrag der Annäherung des Wälzkörpers zur Laufbahn am
		Außenring
δ_{Hertz}	mm	Betrag der Annäherung der Kontaktpartner nach Hertz

δ_{I}	mm	Betrag der Annäherung des Wälzkörpers zur Laufbahn am
		Innenring
Δα	0	Änderung des Druckwinkels
ΔF	Ν	Änderung der Belastung
$\Delta \Theta$	0	Änderung des Kippwinkels
ΔM	Nm	Änderung der Momentenbelastung
ΔR	mm	Abstandsänderung der Krümmungsradienabstände der Lauf-
		bahnen unter Belastung
$\Delta r_{\rm A}$	mm	Lagerringaufweitung am Außenring
Δr_{I}	mm	Lagerringstauchung am Innenring
Δu	mm	Änderung der Verschiebung
η	-	Beiwert nach Hertz
Θ	0	Kippwinkel der Lagerringe
Θ_{x}	0	Kippwinkel der Lagerringe um x-Achse
$\Theta_{\rm y}$	0	Kippwinkel der Lagerringe um y-Achse
κ	-	Schmiegung
$\kappa_{\rm A}$	-	Schmiegung am Außenring
κ_{I}	-	Schmiegung am Innenring
μ	-	Reibkoeffizient
v	-	Querkontraktionszahl
ξ	-	Beiwert nach Hertz
π	-	Kreiszahl pi
Σk	-	Summe der Krümmungen am Wälzkontakt
ψ	-	Beiwert nach Hertz

Vektoren und Matrizen

D	Dämpfungsmatrix
D _{red}	reduzierte Dämpfungsmatrix
М	Massenmatrix
M _{red}	reduzierte Massenmatrix
p	Lastvektor
$p_{\rm red}$	Lastvektor eines reduzierten Systems
q	Verschiebungsvektor eines reduzierten Systems
ġ	Geschwindigkeitsvektor eines reduzierten Systems
<i>q</i>	Beschleunigungsvektor eines reduzierten Systems
S	Steifigkeitsmatrix
S_{red}	reduzierte Steifigkeitsmatrix

Т	Transformationsmatrix
и	Verschiebungsvektor
ù	Geschwindigkeitsvektor
ü	Beschleunigungsvektor

Kurzfassung

Die Berechnung von Vierpunkt-Großwälzlagern erfolgt heutzutage mit Berechnungsverfahren nach DIN Normen, die in der Regel für kleinere Standardwälzlager entwickelt wurden. Zur Berücksichtigung der Unterschiede, die zwischen einem Vierpunkt-Großwälzlager und einem Standardwälzlager vorliegen, werden üblicherweise pauschale Abminderungsfaktoren verwendet. Diese haben aber oftmals eine Überdimensionierung des Wälzlagers zur Folge.

Zu Beginn der Arbeit werden die Berechnungsansätze zur Bestimmung der statischen Tragfähigkeit, der Steifigkeit, der Lebensdauer und des Reibmomentes für den speziellen Anwendungsfall "Vierpunkt-Großwälzlager" näher betrachtet. Dabei zeigt sich, dass Berechnungsansätze, die die einzelnen Wälzkörperkräfte berücksichtigen, besser für Vierpunkt-Großwälzlager geeignet sind als die heutzutage üblichen Standardberechnungsverfahren. Die Ermittlung der exakten Wälzkörperkräfte ist jedoch in diesen Ansätzen die größte Schwierigkeit, da die Verformungen der Lagerringe, die unter einer Belastung entstehen, beachtet werden müssen. Zur Berechnung der Wälzkörperkräfte gibt es bereits iterative Rechenansätze, die jedoch nur mit sehr großem Aufwand die Verformung der Lagerringe berücksichtigen.

Aus diesem Grund wird in dieser Arbeit speziell für Vierpunkt-Großwälzlager ein Berechnungsansatz erarbeitet, der die Wälzkörperkräfte im Inneren des Vierpunkt-Großwälzlagers berechnet und dabei das Verformungsverhalten der Lagerringe im Zusammenhang mit der Verformung der Anschlusskonstruktion berücksichtigt. Als grundlegender Ansatz hierfür wird die Mehrkörpersimulation verwendet. Mit ihr kann die Abbildung des Kontaktverhaltens zwischen den einzelnen Wälzkörpern und den Laufbahnen der Lagerringe einfach gestaltet werden.

Ziel dieser Arbeit ist es, die Grundlage für einen neuen Berechnungsansatz zu schaffen, der als einfaches Handwerkzeug bereits sehr früh im Konstruktionsprozess zur Berechnung der einzelnen Wälzkörperkräfte verwendet werden kann. An einem Beispiel aus der Praxis wird der neu entwickelte Berechnungsansatz aufgezeigt.

Schlagwörter: Vierpunkt-Großwälzlager, Kugeldrehverbindung, Simulation von Wälzkörperkräften, Mehrkörpersimulation

Abstract

Nowadays, the calculation of four-point slewing bearings is normally carried out with calculation methods in accord with DIN standards, which have been developed for smaller standard bearings in the first place. For the consideration of the differences between a four-point slewing bearing and a standard bearing normal reduction factors are used. In many cases, however, the consequences are over dimensions of the bearing.

At the beginning of the work process the basic approach of the calculation of the load capacity, the stiffness, the life cycle time and the friction for special application 'four-point slewing bearing' are examined more closely. This reveals that calculation methods, based on a calculation of the individual ball forces, are more suitable for the calculation of the four-point slewing bearings than the standard calculation methods which are commonly used these days. However, the determination of the exact ball forces is the greatest difficulty in these approaches. The bearing rings of a four-point slewing bearing often have larger deformations; this factor needs to be included in the calculation. Iterative calculation methods for the calculation of these ball loads do already exist, nevertheless it is a large effort to consider the deformation of the bearing rings in this method.

For this reason, a calculation approach especially for four-point slewing bearings is developed in this work which calculates the ball force inside the four-point slewing bearing and considers the deformation behavior of the bearing rings in connection with the deformation of the connector construction. The multi-body-simulation is used as a basis for this calculation method, because the reproduction of the contact behavior between the individual rolling elements and the raceways of the bearing rings can be simulated very simply that way.

The aim of this work is creating the basis for a new calculation method, which can even be used at an elementary stages as a simple hand tool of the design process for calculating the various ball forces of slewing bearings. They can be used in separate calculations, e.g. for calculating the static load carrying capacity. This newly developed method is shown in a practical example.

Tags: four-point slewing bearing, ball bearing slewing ring, simulating ball forces, multi-body-simulation