Fortschritt-Berichte VDI

VDI

Reihe 12

Verkehrstechnik/ Fahrzeugtechnik M.Sc. Jakob Philipp Bechtloff, Ludwigsburg

Nr. 809

Schätzung des Schwimmwinkels und fahrdynamischer Parameter zur Verbesserung modellbasierter Fahrdynamikregelungen

Berichte aus dem

Institut für Automatisierungstechnik und Mechatronik der TU Darmstadt Das Ersteller

https://doi.org/10.51202/9783186809124-I Generiert durch IP '3.145.152.95', am 06.05.2024, 16:27:22. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

Schätzung des Schwimmwinkels und fahrdynamischer Parameter zur Verbesserung modellbasierter Fahrdynamikregelungen

Dem Fachbereich Elektrotechnik und Informationstechnik der Technischen Universität Darmstadt zur Erlangung des Grades eines Doktor-Ingenieurs (Dr.-Ing.) vorgelegte Dissertation

von

Jakob Philipp Bechtloff, M.Sc.

geboren am 12. März 1988 in Peine

Referent: Korreferent: Prof. Dr.-Ing. Dr. h. c. Rolf Isermann Prof. Dr.-Ing. Jürgen Adamy

Tag der Einreichung: 19. September 2017

D 17 · Darmstadt

https://doi.org/10.51202/9783186809124-I Generiert durch IP '3.145.152.95', am 06.05.2024, 16:27:22. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

https://doi.org/10.51202/9783186809124-I Generiert durch IP '3.145.152.95', am 06.05.2024, 16:27:22. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

Fortschritt-Berichte VDI

Reihe 12

Verkehrstechnik/ Fahrzeugtechnik M.Sc. Jakob Philipp Bechtloff, Ludwigsburg

Nr. 809

Schätzung des Schwimmwinkels und fahrdynamischer Parameter zur Verbesserung modellbasierter Fahrdynamikregelungen

Berichte aus dem

Institut für Automatisierungstechnik und Mechatronik der TU Darmstadt

Bechtloff, Jakob Philipp Schätzung des Schwimmwinkels und fahrdynamischer Parameter zur Verbesserung modellbasierter Fahrdynamikregelungen

Fortschr.-Ber. VDI Reihe 12 Nr. 809. Ďüsseldorf: VDI Verlag 2018. 176 Seiten, 93 Bilder, 1 Tabelle. ISBN 978-3-18-380912-7, ISSN 0178-9449, € 62,00/VDI-Mitgliederpreis € 55,80.

Für die Dokumentation: Nichtlineare Zustandsschätzung – Fahrzustandsschätzung – Fahrdynamikbeobachter – Unscented Kalman-Filter – Fahrdynamikmodelle – Sensorfusion – Schwimmwinkelschätzung – Reibwertschätzung – Schräglaufsteifigkeiten – Fahrdynamikregelsysteme

Die vorliegende Arbeit wendet sich an Ingenieure und Wissenschaftler im Bereich der Fahrdynamikregelungen. Sie befasst sich mit der Entwicklung einer Methode zur Schätzung der nichtmessbaren Bewegungsgrößen Schwerpunktgeschwindigkeit und Schwimmwinkel. Dafür wird lediglich die Sensorik der Electronic Stability Control genutzt. Damit eine modellbasierte Steuerung oder ein Führungsmodell auf Veränderung des querdynamischen Fahrverhaltens reagieren kann, werden zusätzlich die fahrdynamisch wichtigsten Parameter, wie die Schräglaufsteiligkeiten und der maximale Reibwert während des Fahrbetriebs geschätzt. Hierzu werden Fahrdynamikmodelle entwickelt, die alle erforderlichen Situationen, wie die Fahrt in der Steilkurve, Fahrten im physikalischen Grenzbereich auf Hoch- und Niedrigreibwert genau genug modellieren. Es wird gezeigt, warum ein Unscented Kalman-Filter im fahrdynamischen Grenzbereich durch die Berücksichtigung der Nichtlinearität der Achsquerkraftkennlinien den Schwimmwinkel robuster als der erweiterte Kalman-Filter schätzt.

Bibliographische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet unter <u>www.dnb.de</u> abrufbar.

Bibliographic information published by the Deutsche Bibliothek

(German National Library) The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie (German National Bibliography); detailed bibliographic data is available via Internet at www.dnb.de.

D 17

© VDI Verlag GmbH · Düsseldorf 2018

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe (Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung, vorbehalten.

Als Manuskript gedruckt, Printed in Germany. ISSN 0178-9449 ISBN 978-3-18-380912-7

Vorwort

Diese Arbeit entstand im Rahmen meiner Tätigkeit als wissenschaftlicher Mitarbeiter bei Prof. Dr.-Ing. Dr. h.c. Isermann am Institut für Regelungstechnik und Mechatronik der TU Darmstadt im Rahmen einer Forschungskooperation mit der Bosch Engineering GmbH.

Mein Dank gilt zuallererst Herrn Prof. Isermann für die wissenschaftliche Betreuung sowie den Freiraum, den er mir bei der Bearbeitung dieser Aufgabe ließ. Durch seine angenehme und gelassene Art ist er für mich auch menschlich ein Vorbild geworden.

Ich danke Herrn Prof. Adamy für die Übernahme des Korreferats und das Interesse an meiner Arbeit.

Danken möchte ich auch den Mitarbeitern der Bosch Engineering GmbH, die in vielen Gesprächen und Diskussionen anregende Impulse gaben und so wesentlich zum Gelingen dieser Arbeit beitrugen. Vor allem möchte ich mich bei Dr. König bedanken. Er war der Initiator für die Forschungskooperation und konnte mich immer wieder motivieren und mit seinem fahrdynamischen Wissen unterstützen.

Ich möchte mich auch bei all meinen Kollegen am Institut für Automatisierungstechnik für das familiäre Arbeitsklima bedanken. Mit den Jahren sind echte Freundschaften entstanden. Für ihre Arbeit im Rahmen von Seminar- und Abschlussarbeiten möchte ich mich bei meinen ehemaligen Studenten bedanken. Herausheben möchte ich hier Sven Pospischil, dessen Arbeit ein Teil meiner Dissertation wurde. Ebenfalls möchte ich mich beim Team vom Sekretariat Ilse Brauer, Corinna Fischer und ganz besonders bei Brigitte Hoppe bedanken, die die Arbeit Korrektur gelesen hat.

Ein riesiger Dank gilt meinen Eltern, die es mir ermöglichten Maschinenbau und Mechatronik zu studieren. Allerdings schufen sie schon viel früher die Basis für diese Arbeit, indem sie mir große Freiräume ließen, meine Leidenschaft für die Geschwindigkeit und das Gefühl für den fahrdynamischen Grenzbereich von Kind an auszuleben. Mein Vater ließ sich im Laufe der Promotion auch von den Kalman-Filtern begeistern, sodass wir immer wieder anregende fachliche Diskussionen führen konnten. Meine Mutter gab mir den nötigen Halt und ermutigte mich, wenn meine Motivation auch mal nachließ.

Ludwigsburg, Januar 2018 Jakob Bechtloff

Inhaltsverzeichnis

Symbole und Abkürzungen

Ku	Kurzfassung XII					
1	Einführung					
	1.1	Problemstellung	2			
	1.2	Zielsetzung und Stand der Technik	2			
		1.2.1 Übergrundgeschwindigkeit	2			
		1.2.2 Schwimmwinkel	4			
		1.2.3 Maximaler Reibwert	11			
		1.2.4 Schräglaufsteifigkeiten	14			
		1.2.5 Achsindividuelle maximale Reibwerte in Querrichtung	17			
	1.3	Konzeptbeschreibung und Gliederung der Arbeit	18			
2	Mod	lellbildung	21			
	2.1	Koordinatensysteme	21			
	2.2	Lagedarstellung	22			
	2.3	Reifen- und Achskraftmodelle	23			
		2.3.1 Reifenverhalten	24			
		2.3.2 Effektives Achsquerkraftmodell	25			
		2.3.3 Transientes Querkraftverhalten	29			
		2.3.4 Reifenlängskraftmodell	30			
	2.4	Starrkörperbewegung	31			
		2.4.1 Beispiel: Steilkurve	33			
	2.5	Zweispurmodell	34			
	2.6	Erweitertes Einspurmodell	40			
	2.7	Lineares Einspurmodell	41			
	2.8	Wankmodell	44			
	2.9	Zusammenfassung	45			
3	Grur	ndlagen der Zustandsschätzung	46			
	3.1	Erweitertes Kalman-Filter	47			
	3.2	Unscented Kalman-Filter	48			
	3.3	Vergleich des EKF mit dem UKF	50			
4	Iden	tifikation	53			
	4.1	Grundparameter	53			
	4.2	Referenzmesssystem	54			

		4.2.1	Aufbau	55
		4.2.2	Ergebnisse	57
	4.3	Wankn	nodell	58
	4.4	Achsqu	uerkraftmodelle	;9
		4.4.1	Vorgehen	;9
		4.4.2	Identifikation ohne Einfluss von Längsschlupf 6	53
		4.4.3	Identifikation bei kombiniertem Schlupf	58
	4.5	Achslä	ngskraftmodelle	71
	4.6	Validie	rung und Vergleich der Einspurfahrdynamikmodelle	2
		4.6.1	Stationäres Verhalten	'3
		4.6.2	Bremsen in der Kurve	'4
		4.6.3	Dynamisches Verhalten	'5
	4.7	Zusam	menfassung	'5
5	Schä	itzung fa	hrdynamischer Zustände und Parameter 7	7
	5.1	Aufbau	u der Kalman-Filter	17
	5.2	Prädik	tion	'9
	5.3	Korrek	.tur	\$2
		5.3.1	Einspurmodellvorderradgeschwindigkeit	\$3
		5.3.2	Achslängskräfte	34
		5.3.3	Achsquerkräfte	\$6
		5.3.4	Schwimmwinkel für niedrige Geschwindigkeiten	\$8
	5.4	Güte d	er Schätzung der Geschwindigkeit und der Fahrbahnsteigung	<i>)</i> 1
	5.5	Güte d	er Schätzung des Schwimmwinkels und des Fahrbahnwankwinkels 9	15
	5.6	Verglei	ich der Schwimmwinkelschätzung mit EKF und UKF) 7
	5.7	Zusam	menfassung)0
6	Valid	lierungse	ergebnisse für verschiedene Fahrmanöver 10	2
	6.1	Geschy	windigkeitsschätzung	12
	6.2	Schwin	mmwinkel- und Reibwertschätzung 10	13
		6.2.1	Stationäre Kreisfahrt	15
		6.2.2	Doppelspurwechsel	15
		6.2.3	Steilkurve)6
		6.2.4	Handlingkurs	0
		6.2.5	Driften	.0
		6.2.6	Niedrigreibwert	1
		6.2.7	Zusammenfassung 11	5
	6.3	Schätz	ung der Schräglaufsteifigkeiten 12	20
		6.3.1	Adaption von zufälligen Startwerten auf Winterbereifung 12	20
		6.3.2	Adaption von Winter- auf Sommerbereifung 12	2
		6.3.3	Vergleich mit dem EKF und modularer Parameterschätzung 12	:3
	6.4	Zusam	menfassung	25

7	Adap	otive modellbasierten Fahrdynamikregelung auf Basis der geschätzten Größen	127
	7.1	Adaptive flachheitsbasierte Modellfolgesteuerung	127
		7.1.1 Entwurf einer Steuerung für flache Systeme	128
		7.1.2 Aufbau	129
		7.1.3 Simulationsergebnisse	131
	7.2	Schwimmwinkel- und Gierratenregelung durch Bremseingriffe	134
		7.2.1 Aufbau der Gierraten- und Schwimmwinkelregelung	135
		7.2.2 Simulationsergebnisse	138
	7.3	Kombinierte Schwimmwinkel und Gierraten-Steuerung und Regelung	139
		7.3.1 Performancesteigerung durch kombinierte Lenk- und Bremseingriffe	140
		7.3.2 Virtueller Fahrversuch	141
	7.4	Zusammenfassung	142
8	Zusa	mmenfassung und Ausblick	143
8 9	Zusa Anha	ammenfassung und Ausblick	143 146
8 9	Zusa Anha 9.1	mmenfassung und Ausblick ang Definition der Flachheit	143146
8 9	Zusa Anha 9.1 9.2	mmenfassung und Ausblick ang Definition der Flachheit	143146146
8 9	Zusa Anha 9.1 9.2	mmenfassung und Ausblick ang Definition der Flachheit	 143 146 146 146
8 9	Zusa Anha 9.1 9.2 9.3	mmenfassung und Ausblick ang Definition der Flachheit	 143 146 146 148
8 9 Lit	Zusa Anha 9.1 9.2 9.3 eratur	mmenfassung und Ausblick ang Definition der Flachheit	 143 146 146 148 151
8 9 Lit Eig	Zusa Anha 9.1 9.2 9.3 eratur gene V	mmenfassung und Ausblick ang Definition der Flachheit	 143 146 146 148 151 159

Symbole und Abkürzungen

Lateinische Symbole und Formelzeichen

Symbol	Beschreibung	Einheit
A	Systemmatrix	
$A_{\rm X}$	Fahrzeugstirnfläche	
а	Beschleunigung	m/s^2
ac	Zentripetalbeschleunigung	m/s^2
В	Eingangsmatrix	
В	Pacejka-Reifenmodell-Parameter für die Steigung	
b	mittlere Spurweite	m
b_{f}	Spurweite vorne	m
$b_{\rm r}$	Spurweite hinten	m
$b_{\rm S}$	Abstand Sensor - Schwerpunkt in Y-Richtung	m
С	Pacejka-Reifenmodell-Formparameter	
C_{Roll}	Parameter für die Wankmomentverteilung	
$c_{\rm W}$	Luftwiderstandsbeiwert	
c_{s_X}	Schlupfsteifigkeit	Ν
c_{sx}^*	auf die Radlast bezogene Schlupfsteifigkeit	
c_{α}	Schräglaufsteifigkeit	N/rad
D	Pacejka-Reifenmodell-Parameter für das Kraftmaximum	
D_{Roll}	Dämpfung des Wankmodells	rad/(m/s)
Ε	Pacejka-Reifenmodell-Formparameter	
F	Kraft	Ν
F_{T}	Reifenkraft	Ν
$F_{\rm R}$	Rollwiderstandskraft	Ν
g	Gravitationskonstante	m/s^2
Н	Ausgangsmatrix	
h	Ausgangsfunktionsvektor	
h	Schwerpunkthöhe des Fahrzeugs	m
$h_{\rm S}$	Höhe des Sensors	m
i _s	Lenkübersetzung	
J	Trägheitsmoment	kgm ² /rad
K	Kalman-Verstärkung	
$K_{\rm Roll}$	Verstärkung des Wankmodells	$rad/(m/s^2)$
kα	Quotient aus Querkraft und Schräglaufsteifigkeit	
l	Radstand	m

Symbol	Beschreibung	Einheit
l _r	Abstand Hinterachse - Fahrzeugschwerpunkt	m
$l_{ m f}$	Abstand Vorderachse - Fahrzeugschwerpunkt	m
ls	Abstand Sensor - Schwerpunkt in X-Richtung	m
l_{T}	Einlauflänge	m
M	Drehmoment	Nm
$M_{\rm D}$	Antriebsmoment	Nm
$M_{ m B}$	Bremsmoment	Nm
т	Gesamtfahrzeugmasse	kg
Р	Kovarianzmatrix des Schätzfehlers	
P _{xy}	Kreuzkovarianzmatrix zwischen Schätzfehler und Ausgang	
P _{zz}	Kovarianzmatrix der Messung	
р	Parametervektor	
Q	Kovarianzmatrix des Prozessrausches	
R	Kovarianzmatrix des Messrausches	
R	Kurvenradius	m
<i>r</i> _{dyn}	dynamischer Reifenhalbmesser	m
$s_{\rm Y}$	Querschlupf	
$s_{\rm X}$	Längsschlupf	
S	resultierender Schlupf	
S _{X,crit}	kritischer Schlupf	
Т	Transformationsmatrix	
T_0	Abtastzeit	S
T_{Roll}	Zeitkonstante des Wankmodells	S
t	Zeit	S
u	Eingangsvektor	
v	Messrauschvektor	
v	Schwerpunktgeschwindigkeit	m/s
W	Jacobimatrix des Prozessrauschens	
W	Prozessrauschvektor	
Х	Sigma-Partikel	
X	Zustandsvektor	
â	geschätzter Zustandsvektor	
$x_{\rm E}$	laterale Position	m
Y	Sigma-Partikel durch die Ausgangsfunktion transformiert	
У	Systemausgang	
$\mathcal{Y}_{\rm E}$	longitudinale Position	m
Z	Messvektor	

Griechische Symbole und Formelzeichen

Symbol	Beschreibung	Einheit
α	Schräglaufwinkel	rad
$\alpha_{\rm crit}$	Schräglaufwinkel bei dem die maximale Querkraft entsteht	rad
$\alpha_{ m f}$	Schräglaufwinkel an der Vorderachse	rad
α_{ij}	Schräglaufwinkel	rad
$\alpha_{\rm r}$	Schräglaufwinkel an der Hinterachse	rad
β	Schwimmwinkel in Aufbau-Koordinaten (DIN-ISO-8855:2013-11 (2013) bezieht sich auf die Ebene)	rad
β	Schwimmwinkelgeschwindigkeit in Aufbau-Koordinaten (DIN-ISO- 8855:2013-11 (2013) bezieht sich auf die Ebene)	rad/s
$\delta_{\rm f}$	mittlerer Lenkwinkel an der Vorderachse	rad
$\delta_{\rm H}$	Lenkradwinkel	rad
δ _r	mittlerer Lenkwinkel an der Hinterachse	rad
θ	Parametervektor	
θ	Nickwinkel des Aufbaus relativ zur horizontalen Ebene	rad
$\theta_{\rm K}$	Nickwinkel des Aufbaus relativ zur Fahrbahnebene	rad
$\theta_{\rm T}$	Nickwinkel der Fahrbahnebene relativ zur horizontalen Ebene	rad
κ	Parameter des Achsquerkraftmodells zur Parametrierung des Längs- schlupfeinflusses	
μ_{ii}	resultierender Kraftschlussbeiwert am Rad ij, ij \in {fl,fr,rl,rr}	
$\mu_{\rm max,i}$	maximaler Kraftschlussbeiwert an Achse i, $i \in \{f, r\}$	
ξ	Regressionsvektor	
ρ	Luftdichte	kg/m ³
σ	Standartabweichung	0,
φ	Wankwinkel des Aufbaus relativ zur horizontalen Ebene	rad
¢κ	Wankwinkel des Aufbaus relativ zur Fahrbahnebene	rad
$\varphi_{\rm T}$	Wankwinkel der Fahrbahnebene relativ zur horizontalen Ebene	rad
Ψ	Vektor der Eulerwinkel	rad
ψ	Gierwinkel zum erdfesten Koordinatensystem	rad
ψ	Gierrate in der Ebene	rad/s
ι. ψ	Gierbeschleunigung in der Ebene	rad/s ²
ω_{ii}	Raddrehgeschwindigkeit	rad/s
$\omega_{\rm X}$	gemessene Winkelgeschwindigkeit um die Fahzeuglängsachse (Wank- rate)	rad/s
$\omega_{\rm Z}$	gemessene Winkelgeschwindigkeit um die Fahrzeughochachse (Gier- rate)	rad/s
ώx	gemessene Wankwinkelbeschleunigung	rad/s ²
ώz	Gierbeschleunigung um die Fahrzeughochachse	rad/s^2

Indizes

Indize	Beschreibung
Corr	Correvit
Е	im erdfesten Koordinatensystem
f	an der Vorderachse
fl	Vorderachse links
fr	Vorderachse rechts
r	an der Hinterachse
rl	Hinterachse links
rr	Hinterachse rechts
S	im Sensorkoordinatensystem
V	im Fahrzeugkoordinatensystem
Х	in X-Richtung im jeweiligen Koordinatensystem
Y	in Y-Richtung im jeweiligen Koordinatensystem
Z	in Z-Richtung im jeweiligen Koordinatensystem

Abkürzungen

Kürzel	vollständige Bezeichnung
ABS	Antiblockiersystem
ATP	Automotiv Testcenter Papenburg
CG	Center of Gravity (Schwerpunkt)
EG	Eigenlenkgradient
EKF	erweitertes Kalman-Filter
ESC	Electronic Stability Control
ESM	Einspurmodell
ESP	elektronisches Stabilisierungsprogramm
FDM	Fahrdynamikmodell
GPS	Global-Positioning-System
HA	Hinterachse
HK	Handlingkurs
IMU	Inertial-Measurement-Unit
KIN	kinematisches Modell
KF	Kalman-Filter
LS	Least-Square
max	maximal
min	minimal
NLB	nichtlinearer Beobachter
PT1	Verzögerungsglied 1. Ordnung
PT2	Verzögerungsglied zweiter Ordnung
PZB	Prüfzentrum Boxberg
RC	Rollcenter (Wankpol)
RLS	Recursive-Least-Square
STM	Single Track Model
rms	root mean square
SG	Schwimmwinkelgradient
SR	Sommerreifen
UKF	Unscented Kalman-Filter
WG	Wankwinkelgradient
WI	Wankindex
WR	Winterreifen
VA	Vorderachse
ZVF	Zustandsvariablenfilter
ZSM	Zweispurmodell

XII

Kurzfassung

Ziel dieser Arbeit war die Entwicklung einer Methode zur Schätzung der wichtigsten Bewegungsgrößen Schwerpunktgeschwindigkeit und Schwimmwinkel, um diese einer Fahrdynamikregelung zur Verfügung zu stellen. Dazu sollte lediglich die Sensorik der Electronic Stability Control (ESC) genutzt werden. Damit eine modellbasierte Steuerung oder ein Führungsmodell auf Veränderung des querdynamischen Fahrverhaltens reagieren kann, sollten zusätzlich die fahrdynamisch wichtigsten Parameter, wie die Schräglaufsteifigkeiten und der maximale Reibwert während des Fahrbetriebs geschätzt werden.

Fahrdynamische Modelle wurden auf Basis der Starrkörperbewegung im Raum entwickelt, die alle erforderlichen Situationen, wie die Fahrt in der Steilkurve, Fahrten im physikalischen Grenzbereich auf Hoch- und Niedrigreibwert genau genug modellieren. Dabei wurde ein optimaler Kompromiss aus Komplexität und Genauigkeit gefunden.

Die fahrzeug- und reifenabhängigen Parameter dieser nichtlinearen Schlupf-Kraftmodelle wurden durch Fahrversuche und einer neu entwickelten Referenzsensorik-Konfiguration bestehend aus 6D-IMU, GPS und *Correvit*-Sensor identifiziert. Dabei wurden erstmals auch Manöver mit gleichzeitigem Längs- und Querschlupf (Kurvenbremsungen) verwendet, um die Querkraftabschwächung in Abhängigkeit des Längsschlupfes zu parametrieren. Die Validierung mit einer Kurvenbremsung bei maximaler Querbeschleunigung zeigt die Leistungsfähigkeit des resultierenden Fahrdynamikmodells auf.

Die Schätzung der fahrdynamischen Zustände und Parameter mit ESC-Sensorik wurde auf Basis von erweiterten und Unscented Kalman-Filtern entwickelt. Die Prädiktion der Zustände erfolgte wie in der Luft- und Raumfahrt üblich mit einem kinematischen Modell, d.h. durch Integration der Längs- und Querbeschleunigungsensorsignale, sowie der Gierrate. Die Korrektur dieser instabilen Integration erfolgte durch die Geschwindigkeiten der Vorderräder und mit den (aus Sensorgrößen geschätzten) Längs- und Querkräften der Vorder- und Hinterachse. Durch Berücksichtigung des maximalen Reibwerts in den Achslängs- und Querkraftmodellen wird dieser bei genügend Schlupf beobachtbar.

Es konnte gezeigt und erstmals begründet werden, warum der hier zur Zustandsschätzung eingesetzte Unscented Kalman-Filter im fahrdynamischen Grenzbereich durch die Berücksichtigung der Nichtlinearität den Schwimmwinkel robuster als der erweiterte Kalman-Filter schätzt.

Die Schwimmwinkelschätzung wurde mittels 355 unterschiedlicher, vom Autor selbst durchgeführter Testfahrten auf Fahrdynamikflächen, Steilkurven, Handlingkursen und auf Schnee validiert. Der Algorithmus lieferte auf ca. 1000 Testfahrt-Kilometern in allen erdenklichen fahrdynamisch relevanten Situationen robuste Ergebnisse. Im Mittel betrug der maximale Schwimmwinkelfehler während einer Testfahrt 2,7°. Der entwickelte Schwimmwinkelschätzer kann daher einen entscheidenden Beitrag bei der Weiterentwicklung des ESC leisten, indem insbesondere kritische Situationen frühzeitig erkannt werden. Die Reibwertschätzung reagierte sehr schnell, sodass bereits bei ca. 80-85% der maximalen Querbeschleunigung der maximale Reibwert richtig eingeschätzt wurde. Die Schräglaufsteifigkeiten konnten während einer Landstraßenfahrt mit mittleren Querbeschleunigungen robust geschätzt werden. Der Unterschied zwischen einer Winterund Sommerbereifung wurde deutlich.

Um das Zusammenspiel des entwickelten Schätzalgorithmus mit einer Fahrdynamikregelung zu demonstrieren, wurde eine Modellfolgesteuerung einer aktiven Vorder- und Hinterachslenkung zur Verbesserung der Gierdynamik in einer *IPG-Carmaker*-Simulation implementiert. Durch die Rückführung des geschätzten Schwimmwinkels und einem einfachen P-Regler konnte das Fahrzeug durch Bremseingriffe auch bei einem langsam anwachsenden Schwimmwinkeln frühzeitig stabilisiert werden, was durch eine Gierratenrückführung nicht möglich war.