Fortschritt-Berichte VDI

VDI

Reihe 10

Informatik∕ Kommunikation Dipl.-Ing. Peter Seibold, Erkelenz

Nr. 853

Visuelle Odometrie in Echtzeit für ein Fluggerät

FernUniversität in Hagen Schriften zur Informationsund Kommunikationstechnik

Generiert durch IP '3.15.145.5 tellen und Weitergeben von k

https://doi.org/10.51202/9783186853103-I Generiert durch IP '3.15.145.50', am 16.06.2024, 16:46:14. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig. FernUniversität in Hagen

DISSERTATION

Visuelle Odometrie in Echtzeit für ein Fluggerät

Der Fakultät für Mathematik und Informatik der FernUniversität in Hagen zur Erlangung des akademischen Grades eines

> Dr.-Ing. eingereichte Dissertation von Dipl.-Ing. Peter Ulrich Seibold aus Balingen

Gutachter: 1. Prof. Dr.-Ing. M. Gerke

2. Prof. Dr.-Ing. J. Horstmann

Datum der mündlichen Prüfung: 23.12.2016

Danksagungen

Die vorliegende Dissertation ist während meiner Forschungsarbeiten im Lehrgebiet Prozesssteuerung und Regelungstechnik der Fakultät für Mathematik und Informatik der FernUniversität in Hagen enstanden.

Mein besonderer Dank gilt Herrn Prof. Dr.-Ing. Gerke, der meine Forschungsrichtung anregte und begleitete. Mit Akribie widmete er sich meiner Arbeit und gab mir zahlreiche sehr nützliche Hinweise. Bei einem herben Rückschlag bezüglich der Versuchsergebnisse ermutigte er mich einen anderen Weg zu beschreiten.

Herrn Prof. Dr.-Ing. Horstmann danke ich für die Übernahme des Zweitgutachtens. Auch er gab mir in einem ausführlichen Gespräch einige Hinweise, die meine Arbeit abrundeten.

Den Kollegen des Lehrgebiets danke ich für die Hilfe beim Umbau und der Ansteuerung des XY-Tisches, bei der Unstützung zu Messfahrten und den vielen Gesprächen.

Mein herzlicher Dank gilt meiner Lebensgefährtin Monika, die mich unermüdlich antrieb die Ergebnisse zu Papier zu bringen, geduldig meine monatelange geistige Abwesenheit ertrug und meine orthografischen Kenntnisse deutlich erweiterte.

Fortschritt-Berichte VDI

Reihe 10

Informatik/ Kommunikation Dipl.-Ing. Peter Seibold, Erkelenz

Nr. 853

Visuelle Odometrie in Echtzeit für ein Fluggerät

Seibold, Peter Visuelle Odometrie in Echtzeit für ein Fluggerät

Fortschr.-Ber. VDI Reihe 10 Nr. 853. Düsseldorf: VDI Verlag 2017. 224 Seiten, 212 Bilder, 26 Tabellen. ISBN 978-3-18-385310-6, ISSN 0178-9627, € 76,00/VDI-Mitgliederpreis € 68,40.

Für die Dokumentation: Bildregistrierung mit Stereokamera – Visuelle Odometrie – 3D-Positionsbestimmung – Normierte Kreuzkorrelation (NCC) – Optischer Fluss – Subpixel

Die vorliegende Arbeit wendet sich an Wissenschaftler und Ingenieure im Bereich der Bildverarbeitung. Sie befasst sich mit der Ermittlung der Bewegung und Position eines unbemannten Fluggerätes mit einer Flughöhe zwischen 0,6 m und 100 m. Die Bilderfassung erfolgt durch eine Stereokamera mit kleiner Basisbreite. Zwei Methoden – optischer Fluss und gebietsbasierte Verfahren (block matching) – werden auf Verwendbarkeit zur Bewegungsanalyse geprüft und verglichen. Durch die kleine Basisbreite der Kamera sind besondere Anforderungen an die Subpixelgenauigkeiten gestellt, die eingehend evaluiert werden. Um Echtzeitbedingungen einzuhalten, werden einige Vereinfachungen eingeführt wie z. B. Reduzierung der Bilinearkoeffizienten für die Rektifizierung und situationsabhängige Bildverkleinerungen. Die Hardwareplattformen CPU, FPGA, DSP und GPGPU werden auf Eignung untersucht

Bibliographische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet unter http://dnb.ddb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek

(German National Library)

The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie (German National Bibliography); detailed bibliographic data is available via Internet at http://dnb.ddb.de.

Schriften zur Informations- und Kommunikationstechnik Herausgeber: Wolfgang A. Halang, Lehrstuhl für Informationstechnik Herwig Unger, Lehrstuhl für Kommunikationstechnik FernUniversität in Hagen

© VDI Verlag GmbH · Düsseldorf 2017

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe (Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung, vorbehalten.

Als Manuskript gedruckt. Printed in Germany. ISSN 0178-9627 ISBN 978-3-18-385310-6

> https://doi.org/10.51202/9783186853103-I Generiert durch IP '3.15.145.50', am 16.06.2024, 16:46:14. Das Erstellen und Weitergeben von Kooien dieses PDFs ist nicht zulässig.

Inhaltsverzeichnis

Abkürzungen I		
Kurzfassung		
1 Einleitung	1	
1.1 Luftschiff: Entstehung und Eigenschaften	1	
1.2 Aufbau der Bilderfassung	6	
1.3 Stand der Technik	7	
1.4 Aufbau der Arbeit	11	
2 Kameramodell und Bewegung	14	
2.1 Modell der Lochkamera	14	
2.1.1 Geometrische Transformationen	15	
2.1.2 Kalibrierung bei unverzerrter Abbildung	20	
2.1.3 Geometrie mehrerer Abbildungen einer Szene	22	
2.1.4 Rektifizierung	26	
2.2 Modell der Linsenkamera	27	
2.3 Fotosensoren auf Halbleiterbasis	28	
2.4 Abbildungsfehler	29	
2.4.1 Abbildungsfehler durch Objektive	29	
2.4.1.1 Vignettierung	29	
2.4.1.2 Verzeichnung	31	
2.4.2 Abbildungsfehler durch Sensoren	34	
2.4.2.1 Rauschen	34	
2.4.2.2 Blooming	35	
2.4.2.3 Smear-Effekt (Unterableatung)	35	
2.5. Bebebung der Verzeichnungen	30 37	
2.5.1 Reschreibung radialer und tangentialer Verzeichnung	37	
2.5.2 Kalibrierung und Rektifizierung bei verzerrter Abbildung	38	
2.6 Ermittlung der Bewegung	41	
2.6.1 Stereogeometrie	41	
2.6.2 Translation	44	
2.6.3 Rotation	46	
2.6.4 Geschwindigkeitsbestimmung	48	
2.7 Zusammenfassung Kapitel 2	48	
3 Bewegungsabschätzung und optischer Fluss	49	

3.1 Einleitung	49
3.2 Voraussetzungen und Probleme bei der Bewegungserfassung	51
3.2.1 Korrespondenzproblem	51
3.2.2 Blendenproblem	52
3.2.3 Beleuchtungsänderung	53
3.2.4 Verdeckung	54
3.3 Klassifizierung der Bewegungsabschätzungsmethoden	56
3.3.1 Differentielle Methoden	57
3.3.2 Gebietspaarung	57
3.3.2.1 SAD	57
3.3.2.2 SSD	57
3.3.3 Energiebasierte Methoden	58
3.3.4 Phasentechniken	58
3.3.5 Merkmalsbasierte Methoden	58
	59
3.4 Optischer Fluss, differenzielles Verfahren	60
3.4.1 Smoothness Constraint nach B. K. Horn und B. G. Schunck	63
3.4.2 Flusskullstall2 lideli Lueds&Rallaue	66
3.4.4 Gaußovramide	67
2.5. Ontischer Eluce, Kerrelationsmethode	71
3.5 0 puscher Fluss, Korrelationsmethode	71
3.5.2 NCC	74
3.5.3 Figenschaften von NCC und ZNCC	75
2.6. Zucammonfassung Kapitol 2	77
5.0 Zusahimemassung Kapiter 5	
4 Vergleich der Verfahren nach Lucas&Kanade und NCC	78
4.1 Reichweite der Erkennung	78
4.2 Helligkeitsempfindlichkeit	80
4.3 Rotationsempfindlichkeit	81
4.4 Berechnungszeit	88
4.5. Subnixelgenauigkeit	88
4.5.1 Subpixelgenauigkeit beim differentiellen Verfahren nach	00
Lucas&Kanade	88
4.5.2 Subpixelgenauigkeit bei der NCC	93
4.5.2.1 Verbesserung durch Abzug des Mittelwertes	97
4.5.2.2 Interpolation über Parabel	103
4.5.2.3 Interpolation über Gaußkurve	106
4.5.2.4 Interpolation über Geraden	106
4.5.2.5. Vorzeichenschlängige Interpolation	107

		4.5.2.6 Interpolation durch Bildvergrößerungen	109
		4.5.2.7 Neue Methode über 'inverse Parabel'	109
		4.5.2.8 Pixel-Locking	113
	4.	5.3 Vergleich der Subpixelfunktionen	116
	4.6	Zusammenfassung Kapitel 4	122
5	V	ersuchsergebnisse	123
	5.1	Virtuelle Welt	123
	5.2	XY-Tisch	128
	5.	2.1 Ergebnisse	130
		5.2.1.1 Gerader Pfad	130
		5.2.1.2 Kreisbahn	131
	5.3	Flugaufnahmen mit Monokamera	134
	5.4	Auswertung von Stereoaufnahmen	138
	5.	4.1 Kameradaten	138
		5.4.1.1 Daten nach Herstellerangaben	139
		5.4.1.2 Eigene Messungen	139
	5.	4.2 Erfassungbereiche für Geschwindigkeiten und Abstände	142
	5.	4.3 Prüfung der Kalibrierung und Rektifizierung über	
		Abstandsberechnungen	144
	5.	4.4 Prüfung der Bewegungsberechnung	149
	5.	4.5 Verfahren für schnelle Berechnung bei realitätsnahen Versuchen	156
		5.4.5.1 Ausgleich des Intensitätsverlaufs	157
		5.4.5.2 Vereinfachung der bilinearen Interpolation	157
		5.4.5.5 Verningerung der Prazision der Billinearkoemziehten	100
		5.4.5.5 Suchbereich für die Bewegungserfassung einschränken	160
		5.4.5.6 Bildverkleinerung	161
		5.4.5.7 Nachbearbeitung: Ausschließen deutlich falsch berechneter Werte	164
	5.	4.6 Realitätsnahe Versuche	167
	5.5	Zusammenfassung Kapitel 5	176
6	In	nplementation in Hardware	177
	6.1	Berechnungszeiten	177
	6.2	Maschinennahe Programmierung	178
	6.3	Parallelisierung	178
	6.4	Hardwareprozessoren	179
	6.	4.1 DSP	180
	6.	4.2 FPGA	180
	6.	4.3 GPGPU	181
	6.5	Zusammenfassung Kapitel 6	185

7	Zusammenfassung und Ausblick	186
Anhang		191
ł	A.1 Lochkamera: Belichtungszeit und Unschärfe durch Beugung	191
ł	A.2 Nützliche Eigenschaften digitaler Filter	192
ł	A.3 Summentabellen	197
ł	A.4 Berechnung der NCC über die Schwarzsche Ungleichung	199
ł	A.5 Synchronisations- und Bildratenbestimmung der Stereokamera	202
Lit	eraturverzeichnis	205

Abkürzungen

3D	dreidimensional
DGPS	Differential Global Positioning System
DSP	Digital Signal Processor
FPGA	Field Programmable Gate Array
fps	Bildrate (frames per second)
GFLOPS	Giga Floating Point Operations Per Second
GPGPU	General Purpose Computation on Graphics Processing Unit
GPS	Global Positioning System
GPU	Graphics Processing Unit
IMU	Inertial Measurement Unit
NCC	Normalized Cross Correlation
NCCa	Normalisierte Kreuzkorrelation approximiert
NED	North – East – Down
SAD	Sum of Absolute Differences
SIFT	Scale-Invariant Feature Transform
SLAM	Simultaneous Localization and Mapping
SSD	Sum of Squared Differences
SURF	Speeded Up Robust Features
UAS	Unmanned Aerial System
YPR	Yaw-Pitch-Roll
ZNCC	Zero-mean Normalized Cross Correlation

Kurzfassung

Unbemannte autonome Kleinfluggeräte gewinnen in den letzten Jahren zunehmend an Bedeutung, da durch Beobachtungen aus der Luft sowohl große Areale überwacht werden können als auch Detailansichten aus verschiedenen Perspektiven ermöglicht werden. Die Miniaturisierung der Sensoren und Aktuatoren erlaubt, leichte Fluggeräte mit niedrigem Energiebedarf zu erstellen. Durch diese Sensoren wird, sofern deren Taktrate und Präzision ausreichen, um die Bewegung des Fluggerätes zu erfassen und zu regeln, der autonome Flug - z. B. entlang eines vorgegebenen Pfades ermöglicht. GPS (Global Positioning System), ein in der Robotik häufig eingesetztes System, liefert die horizontale absolute Position, allerdings ohne zusätzliche Infrastruktur nur mit Genauigkeiten im unteren Meterbereich und die auf ein fiktives Rotationsellipsoid bezogene Höhe auf etwa 10 m genau. Mit der Wiederholungsrate von ca. 1/s ist GPS für eine dynamische Bewegungsregelung nicht ausreichend schnell. Deshalb werden andere Sensoren hinzugezogen. Ein Inertialsensor (IMU) erfasst schnelle Bewegungen sehr gut und ist für eine Kurzzeitregelung geeignet. Da dieser Sensor Beschleunigungen misst, werden Strecken über zweifache Integration ermittelt. Dies ergibt allerdings schon nach kurzer Zeit, bedingt durch einen sich veränderten Gleichanteil im Messwert, quadratisch anwachsende Fehler, die durch weitere Sensoren kompensiert werden müssen. Dazu eignen sich u. a. Kameras, die klein und leichtgewichtig sind und unter Nutzung der visuellen Odometrie zur Verbesserung der Bewegungserfassung führen. Zudem kann mit Stereokameras sehr genau die Höhe des Fluggerätes über dem darunterliegenden Terrain bestimmt werden. Die Daten der drei Sensoren (GPS, IMU und Kameras) werden an ein vorhandenes Flugsystem über ein Kalmanfilter fusioniert.

Die vorliegende Dissertation befasst sich mit der visuellen 3D-Odometrie, um die Position – damit auch die Höhe über Boden – und die momentane Geschwindigkeit eines unbemannten Fluggerätes (UAS, Unmanned Areal System) zu bestimmen. Als Fluggerät wird in dieser Arbeit ein Blimp (Luftschiff ohne Gerüst) der FernUniversität in Hagen verwendet.

Bild 1: Blimp der FernUniversität in Hagen

Die besonderen Anforderungen sind gegeben durch die geringe Nutzlast, die eingeschränkte Energieverfügbarkeit bei einem Kleinluftschiff und die Echtzeitbildverarbeitung. Um permanente zeitaufwendige Nachkalibrierungen zu vermeiden, kommt eine rigide Stereokamera mit kleiner Basisbreite und geringer Masse zum Einsatz.

Bild 2: Eingesetzte Stereokamera "Bumblebee" der Firma Point Grey

Zur Bestimmung des Abstandes zu einer Szene nehmen zwei Kameras diese Szene gleichzeitig auf. Über Bildregistrierungsmethoden wird die Position eines identischen Szenenausschnitts in beiden Aufnahmen bestimmt und über Triangulation der Abstand zur Szene ermittelt. Für die Bewegungsbestimmung werden in zwei nacheinander mit einer Kamera aufgenommenen Bildern identische Szenenausschnitte gesucht. Mit der bekannten Höhe lassen sich die Verschiebung der Kamera und damit die Position des Fluggerätes berechnen. Da die Zeiten der Kameraaufnahmen bekannt sind, kann daraus die Geschwindigkeit des Fluggerätes bestimmt werden. Für die Orientierung der Kameras, die ebenfalls in die Berechnung eingeht, werden Winkeldaten aus der IMU herangezogen.

Durch die für große Abstände sehr geringe Basisbreite der Stereokamera von 24 cm ist das Sichtfeld der eingesetzten Kameras ein Kompromiss zwischen maximal auflösbarer Höhe und maximal erfassbarer Geschwindigkeit. Deshalb werden Verfahren der Bildregistrierung untersucht, die durch Subpixelgenauigkeit eine höhere Auflösung ermöglichen. Hierzu zählen Gradientenverfahren, die ohnehin zunächst nur für Subpixelabstände definiert

sind, oder flächenbasierte Verfahren. Zwei Verfahren, die Gradientenmethode nach Lucas & Kanade und ein flächenbasiertes Verfahren, die Kreuzkorrelation, werden auf Tauglichkeit mit realen Aufnahmen geprüft. Wichtige Eigenschaften sind hierbei die maximal erfassbare Translation, die Genauigkeit, die Empfindlichkeit auf Rotationen und der Einfluss von Belichtungsunterschieden.

Eingehend wird die Subpixelgenauigkeit, u. a. hier mit nachrichtentechnischen Methoden, evaluiert. Zur Subpixelbestimmung im Zusammenhang mit der Kreuzkorrelation wird eine Funktion – hier 'inverse Parabel' genannt – eingeführt. Ziel ist es, eine Subpixelgenauigkeit kleiner als 0.3 px zu erreichen. Mit realen Abbildungen werden die gewählten Verfahren auf ihre Genauigkeiten bezüglich der erfassten Bewegungen überprüft.

Die Echtzeitverarbeitung stellt in diesem Zusammenhang eine besondere Herausforderung dar. Deshalb werden mehrere Maßnahmen vorgestellt, die die Verarbeitung der großen Mengen an Daten vereinfachen, ohne an erforderlicher Präzision zu verlieren. Dazu zählen Gaußfilter mit Ganzzahlwerten und Divisor in Zweierpotenz. Reduzierung der Bilinearkoeffizienten für die Rektifizierung auf wenige Bit Genauigkeit, Einschränken der Gebiete für die Korrespondenzanalyse durch Ausschnitte und Bildverkleinerungen.

Die Parallelisierbarkeit der Algorithmen und deren Einsatz in verschiedene Hardwareplattformen werden erläutert.