Fortschritt-Berichte VDI

VDI

Reihe 10

Informatik/ Kommunikation

Dipl.-Ing. Holger Meuel, Hannover

Nr. 865

Analysis of Affine Motion-Compensated Prediction and its Application in Aerial Video Coding

Institut für Informationsverarbeitung www.tnt.uni-hannover.de

Generiert durch IP '18.216.127.212', an 29.04.2 rstellen und Weitergeben von Kopien dieses PD

https://doi.org/10.51202/9783186865106-I Generiert durch IP '18.216.127.212', am 29.04.2024, 03:59:15. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

Analysis of Affine Motion-Compensated Prediction and its Application in Aerial Video Coding

Von der Fakultät für Elektrotechnik und Informatik der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des akademischen Grades **Doktor-Ingenieur** (abgekürzt: Dr.-Ing.) genehmigte **Dissertation**

von

Dipl.-Ing. Holger Meuel geboren am 27. Februar 1983 in Lübeck

2019

Hauptreferent: Korreferent: Vorsitzender: Prof. Dr.-Ing. Jörn Ostermann Prof. Dr.-Ing. André Kaup Prof. Dr.-Ing. Hans-Georg Musmann

Tag der Promotion: 5. August 2019

Fortschritt-Berichte VDI

Reihe 10

Informatik/ Kommunikation Dipl.-Ing. Holger Meuel, Hannover

Analysis of Affine Motion-Compensated Prediction and its Application in Aerial Video Coding

https://doi.org/10.51202/9783186865106-I Generiert durch IP '18.216.127.212', am 29.04.2024, 03:59:15. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

Meuel, Holger Analysis of Affine Motion-Compensated Prediction and its Application in Aerial Video Coding

Fortschr.-Ber. VDI Reihe 10 Nr. 865. Düsseldorf: VDI Verlag 2019. 168 Seiten, 53 Bilder, 9 Tabellen. ISBN 978-3-18-386510-9, ISSN 0178-9627, € 62,00/VDI-Mitgliederpreis € 55,80.

Keywords: video coding – affine motion-compensated prediction (MCP) – simplified affine motion-compensated prediction – rate-distortion theory – aerial surveillance – region of interest-(ROI-) based video coding – global motion compensation (GMC) – moving object detection – long-term mosaicking – radial distortion compensation

This work deals with affine motion-compensated prediction (MCP) in video coding. Using the rate-distortion theory and the displacement estimation error caused by inaccurate motion parameter estimation, the minimum bit rate for encoding the prediction error is derived. Similarly, a 4-parameter simplified affine model as considered for the upcoming video coding standard VVC is analyzed. Both models provide valuable information about the minimum bit rate for encoding the prediction error as a function of the motion estimation accuracy.

Although the bit rate in MCP can be reduced by using a motion model capable of describing the motion in the scene, the total video bit rate may remain high. Thus, a codec independent coding system is proposed for aerial videos, which exploits the planarity of such sequences. Only new emerging areas and moving objects in each frame are encoded. From these, the decoder reconstructs a mosaic, from which video frames are extracted again. This system outperforms HEVC by 90 %.

Finally, a fully automatic in-loop radial distortion compensation for the generation of long-term mosaics from 1500 aerial frames is proposed.

Bibliographische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet unter <u>www.dnb.de</u> abrufbar.

Bibliographic information published by the Deutsche Bibliothek

(German National Library) The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie (German National Bibliography); detailed bibliographic data is available via Internet at www.dnb.de.

© VDI Verlag GmbH · Düsseldorf 2019

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe (Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung, vorbehalten.

Als Manuskript gedruckt, Printed in Germany. ISSN 0178-9627 ISBN 978-3-18-386510-9

Acknowledgement

This thesis was written during my time at the Institut für Informationsverarbeitung (TNT) of the Gottfried Wilhelm Leibniz Universität Hannover.

My special thank goes to Prof. Dr.-Ing. Jörn Ostermann who provided the possibility to work at the institute. He continuously supported me financially and scientifically. Particularly, I would like to thank for the intense and valuable discussions and supervision during the development of this thesis and of course for the evaluation of my thesis as first examiner. I also would like to thank Prof. Dr.-Ing. André Kaup for being the second examiner of this thesis, his helpful comments and the discussions at several opportunities. I also cordially thank Prof. Dr.-Ing. Hans-Georg Musmann for taking over the chair of the examination board and his continuous scientific support during my time at the TNT. For the inspiring discussions I like to thank Prof. Dr.-Ing. Bodo Rosenhahn who offered friendly support at all times.

Moreover, I especially thank all my colleagues. In particular, I owe my deep gratitude to Dr.-Ing. Marco Munderloh and Dr.-Ing. Ulrike Pestel-Schiller. Thanks for the continuous support in any matter from the very beginning until the defense of my thesis in word and deed! My deep appreciation also goes to my room mate Yiqun Liu who supported me relentlessly in any issue. I like to specially thank Stephan Ferenz, Hendrik Hachmann, Florian Kluger, Hanno Ackermann, Ph.D., Dr.-Ing. Aron Sommer, Dr.-Ing. Karsten Vogt, Stella Graßhof, Benjamin Spitschan, Dr.-Ing. Christian Becker, and Yasser Samayoa for plenty of discussions, general and mathematical support, and their encouragement. My acknowledgment also goes to my former room mate Julia Schmidt for her help and advice in business and personal matters. Thanks for all the fruitful cooperations resulting in publications, scientific and personal development and finally this thesis. For their sedulous support I like to thank Matthias Schuh, Doris Jaspers-Göring, Hilke Brodersen, Melanie Huch and the entire former office staff. For their administrative and constant support my acknowledgment goes to Dr.-Ing. Martin Pahl and Thomas Wehberg. Thanks for the great and inspiring time!

I thank my sister Sylvia Nissen for her good wishes and thoughts and my parents Ingrid and Dr. rer. nat. Bernd Meuel for enabling me to study electrical engineering as a basis for this thesis.

Finally, my deepest gratitude goes to my wife Dr. rer. nat. Katharina Neuhäuser for her untiring magnificent support without this thesis would not have been finalized. Thanks for encouraging me over the entire time, the substantial support and for always lighting up my life! I also owe my gratitude to Katharina's parents Emma and Prof. Dr. rer. nat. Hartmut Neuhäuser for their unconditional support in any matter and for integrating me into their family like a son. This work is dedicated to my wife.

Contents

1	Introduction					1
1.1	Motion-Compensated	d Prediction				. 3
1.2	Challenges for Aerial	Surveillance Video Codi	ing			. 6
	1.2.1 Region of interes	st-based video coding				. (
1.3	Contributions					. 8
1.4	Outline					. 10
_						
2	Basics					T
2.1	Scene Model				• •	. 1
2.2	2 Camera Model				• •	. 13
	2.2.1 Perspective proje	ection			• •	. 13
	2.2.2 Lens model				• •	. 14
	2.2.3 Sensor model .				• •	. 15
	2.2.4 Homogeneous co	oordinates			• •	. 12
	2.2.5 World coordinat	es to camera coordinates .				. 18
2.3	3 Projective Transform	ation and Homography.				. 18
2.4	4 Motion Estimation fr	om Image Sequences.				. 20
	2.4.1 Feature detection	1				. 2
	2.4.2 Correspondence	analysis by Kanade-Lucas-7	Tomasi feature tra	cking		. 23
	2.4.3 Outlier removal:	random sample consensus	(RANSAC)			. 25
2.5	5 Mosaicking of Aerial	Videos				. 26
2.6	6 Hybrid Video Coding	g				. 27
	2.6.1 Motion-compension	sated prediction.				. 28
	2.6.2 Global motion c	ompensation				. 29
2.7	7 Rate-Distortion Theo	rv.				29
2.8	Region of Interest- (R	OI-) based Video Codin	σ			3
	2.9.1 DOI definition a	nd detection	8		•••	2
	2.8.1 ROI definition a				• •	. 55
	2.8.2 KOI encouning.				• •	
2	Rate-Distortion Th	eory for Affine Moti	on Compensa	ation in Vi	ممه	
5	Coding	cory for Annie Moti	on compense		aco	37
21	Efficiency Analysis of	Fully Affine Motion Co.	monsation			20
5.1	Efficiency Analysis of	Fully Alline Motion Col	inpensation		• •	
	3.1.1 Affine motion ar	id error model			• •	. 40
	3.1.2 Probability dens	ity function of the displacen	nent estimation er	ror	• •	. 4
	3.1.3 Power spectral d	ensity of the signal			• •	. 44
	3.1.4 Power spectral d	ensity of the displacement e	estimation error .		• •	. 45
	3.1.5 Rate-distortion f	unction			• •	. 45
	3.1.6 Rate-distortion a	nalysis of affine global moti	ion-compensated	prediction .	• •	. 40
	3.1.7 Conclusions for	the fully affine motion mod	el for global motio	on compensat	tion.	. 52

3.2	Efficiency Analysis of Simplified Affine Motion Compensation			
	3.2.1	Derivation of the probability density function of the displacement estimation		
		error for a simplified affine model	55	
	3.2.2	Rate-distortion analysis of the simplified affine model	58	
3.3	Sumr	nary of Affine Motion-Compensated Prediction in Video Coding	63	
4	ROI-k	pased System for Low Bit Rate Coding of Aerial Videos	65	
4.1	ROI:	New Areas (NAs)	67	
	4.1.1	Calculation of the new areas	67	
	4.1.2	Long-term mosaicking of aerial videos	68	
	4.1.3	In-loop radial distortion compensation	70	
4.2	ROI:	Moving Objects (MOs)	75	
	4.2.1	Highly performant difference image based moving object detection	75	
13	POL	The second	79	
4.5	4.2.1			
	4.3.1	Inherent noise removal of the proposed general ROI coding	83	
4.4	Mosa		84	
4.5	Video	Reconstruction from ROI-Encoded Videos	85	
5	Expe	riments	87	
5.1	Affin	e Motion Compensation in Video Coding.	87	
	5.1.1	Efficiency measurements for fully affine motion-compensated prediction in video		
	01111	coding	88	
	5.1.2	Operational rate-distortion diagrams using JEM	95	
5.2	Evalu	ation of the ROI-based System for Low Bit Rate Aerial Video Coding.	99	
	5.2.1 Objective evaluation of the general ROI-coding system compared to a modified			
	0.211	HEVC-encoder and common HEVC coding	99	
	5.2.2	Subjective tests	102	
	5.2.3	Long-term mosaicking	113	
6	C	name and Conclusions	117	
0	Sum	nary and conclusions	117	
Α	Appe	ndix	123	
A.1	Displ	acement Estimation Error pdf Derivation (Fully Affine Model)	123	
A.2	Displ	acement Estimation Error pdf Derivation (Simplified Affine Model)	127	
A.3	Fouri	er Transform of Displacement Estimation Error (Fully Affine Model)	129	
A.4	Fouri	er Transform of Displacement Estimation Error (Simplified Affine Model)	130	
Bib	liogra	aphy	133	

Abbreviations and Symbols

Abbreviations

AV1	AOMedia Video 1
AVC	Advanced Video Coding (H.264, MPEG-4 part 10)
AWGN	Additive white Gaussian noise
B-frame	Bidirectionally predicted frame
В	Byte
BD	Bjøntegaard delta
BD-PSNR	Bjøntegaard delta PSNR
BD-rate	Bjøntegaard delta rate
CABAC	Context-adaptive binary arithmetic coding
CCR	Comparison category rating (also known as double
	stimulus comparison or pair comparison method)
CIF	Common Intermediate Format, CIF video sequences
	have a resolution of 352×288 pel and are recorded at
	30 fps
CMOS	Complementary metal-oxide-semiconductor
Codec	Coder-decoder
CRF	Corner response function
CTU	Coding tree unit
DCT	Discrete cosine transform
DoF	Degree of Freedom
DPCM	Differential pulse-code modulation
DVB	Digital Video Broadcasting
DVB-C/-C2	Digital Video Broadcasting - Cable (1 st /2 nd genera-
	tion)
DVB-S/-S2	Digital Video Broadcasting - Satellite (1st/2nd genera-
	tion)
DVB-T/-T2	Digital Video Broadcasting – Terrestrial (1 st /2 nd generation)
FP	False positive (detections)

Fps	Frames per second
GMC	Global motion compensation
GME	Global motion estimation
GOF	Group of frames (for in-loop radial distortion com-
	pensation)
GUI	Graphical user interface
HD	High definition (HD resolution equals 1920 × 1080 pel)
HEVC	High Efficiency Video Coding (H.265, MPEG-H part 2)
HM	HEVC Test Model
I-frame	Intra-coded frame
IEC	International Electrotechnical Commission
ISO	International Organization for Standardization
ITU	International Telecommunication Union, former: The
	International Telegraph and Telephone Consultative
	Committee (CCITT, from French: Comité Consultatif
	International Téléphonique et Télégraphique), former
	International Telegraph Union (ITU)
ITU-T	ITU Telecommunication Standardization Sector
JCT-VC	Joint Collaborative Team on Video Coding
JEM	Joint Exploration Model of JVET
JVET	Joint Video Exploration Team (on Future Video Cod-
	ing) of ITU-T VCEG and ISO/IEC MPEG founded in Oc-
	tober 2015, later transitioned into Joint Video Experts
	Team (also abbreviated by JVET) in April 2018
kbit	Kilobit
KLT	Kanade-Lucas-Tomasi feature tracker
LD	Low-delay
LDP	Low-delay p
MB	Megabyte
Mbit	Megabit
MC	Motion compensation
МСР	Motion-compensated prediction
ME	Motion estimation
МО	Moving object
MPEG	Motion Picture Experts Group
MPEG-4 ASP	MPEG-4 Advanced Simple Profile
MSE	Mean squared error

MV	Motion vector
MVP	Motion vector prediction
NA	New area
P-frame	Predicted frame
РСМ	Pulse-code modulation
Pdf	Probability density function
Pel	Picture element (also known as pixel)
PSD	Power spectral density
PSNR	Peak signal-to-noise ratio
QCIF	Quarter CIF, QCIF video sequences have a resolution
	of 176 \times 144 pel and are recorded at 30 fps
RA	Random-access profile
RANSAC	Random sample consensus
RD	Rate-distortion
RDC	Radial distortion compensation
RDO	Rate-distortion optimization
ROI	Region of interest
ROI-MO	Region of interest – moving object
ROI-NA	Region of interest – new area
ROI-PSNR	PSNR of ROI areas
SAD	Sum of absolute differences
SEI	Supplemental enhancement information
SfM	Structure from motion
SIFT	Scale-Invariant Feature Transform
SNR	Signal-to-noise ratio
S	Second
SSD	Sum of squared differences
TCS	Temporally consistent superpixel
ТР	True positive (detections)
TV	Television
UAV	Unmanned aerial vehicle
VCEG	Video Coding Experts Group
VOD	Video on demand
VVC	Versatile Video Coding
x265	Open-source HEVC video encoder software
Y	Luminance component

Symbols

a, b	Parameter of the simplified affine model
A	Affine matrix of size 2×2
Α	Auxiliary variable
A _f	Fully affine matrix of size 2×3
a _{ij}	Entries of the fully affine matrix, $i = \{1,2\}, j = \{1,2,3\}$
a _i	Entries of the simplified affine matrix, $i = \{a, b, c, f\}$
α	Drop rate of an exponential isotropic (autocorrela-
	tion) function $(1 + 1) (1 + $
α_x, α_y	Drop rates of exponential (autocorrelation) functions in x - and y -direction
B _{CRF}	Maximum number of feature points per frame
$b_k(\mathbf{n})$	Binarized image intensity differences of the frame k
c	Parameter of the simplified affine model (translation in <i>x</i> -direction)
$\boldsymbol{C} = (C_x, C_y, C_z)^{T}$	Position of the camera in world coordinates
C _{size,max} , C _{shape,max}	Maximum allowed size and shape change in in-loop radial distortion compensation
c_x, c_y	Thresholds which limit rotations around the <i>x</i> - and <i>y</i> -axis, respectively, in in-loop radial distortion compensation
d	Motion vector
D	Maximum allowed average distortion (rate-distortion theory)
d(u;v)	General distortion measure between symbols u and v (rate-distortion theory)
d_f	Minimum feature distance
$d_k(\mathbf{n})$	Image intensity differences of the frame k
$\boldsymbol{d} = (d_x, d_y)^{T}$	Displacement vector
$\boldsymbol{d}_i = (d_{i,x}, d_{i,y})^{T}$	Displacement of the <i>i</i> -th feature
â	Estimate of <i>d</i>
đ	Average distortion (rate-distortion theory)
^{simp} D	Distortion using a simplified affine model (rate- distortion theory)
$\Delta x', \Delta y'$	Displacement estimation error in horizontal $(x-)$ and vertical $(y-)$ direction of the fully affine model

$\Delta x'_{ m mod}, \Delta y'_{ m mod}$	Displacement estimation error caused by an inappropriate motion model in horizontal $(x-)$ and vertical $(y-)$ direction
$\Delta x'_{\rm s}, \Delta y'_{\rm s}$	Displacement estimation error in horizontal $(x-)$ and vertical $(y-)$ direction of the simplified affine model
δ	Dirac delta function
d'	Motion vector (for transmission) with limited accuracy
е	Prediction error signal
$E(\cdot)$	Expectation value of (\cdot)
$e_k(n)$	Binarized image intensity differences of the frame k after erosion
e _{ij,mod}	Error terms caused by the motion model, $i = \{1,2\}$, $j = \{1,2,3\}$
e'	Quantized prediction error signal (residuum)
eq	Quantization error
e _i	Error terms (perturbations of a, b, c, f) of the simpli-
	fied affine model, $i = \{a, b, c, f\}$
e _{ij}	Error terms (perturbations of a_{ij}) of the fully affine
	model with $i = \{1,2\}, j = \{1,2,3\}$
ϵ	Arbitrarily small error (rate-distortion theory)
f	Frequency (rate-distortion theory)
f	Parameter of the simplified affine model (translation
	in <i>y</i> -direction)
$f_{i,k}$	Position of the <i>i</i> -th feature in the frame k
<i>f</i> _c	Focal length
g_{k-1}	Holds the temporal derivatives of I
h_{11}, \ldots, h_{33}	Elements of H
H	Homography matrix of size 3×3
$H_{\rm G}$	Entropy of a memoryless, time-discrete, amplitude-
	continuous Gaussian source
1, 1	Counter variables
I(n)	Image intensity at the position <i>n</i>
$I_k(\mathbf{n})$	Image intensities of the frame k
1 _{RDC}	Number of iterations for in-loop radial distortion
T T	compensation
I_x, I_y	Partial derivatives of I

k	Frame index
k _{ang}	Constant value in the small-angle approximation
κ_1	Radial distortion parameter
$\kappa_{1,l}$	Radial distortion parameter of group of frames with
	index <i>l</i>
$k_{ m H}$	Harris weighting factor
Κ	Number of code symbols (rate-distortion theory)
К	Camera calibration matrix of size 3×3
1	Counter variable (for groups of frames in in-loop ra-
	dial distortion compensation)
L	Number of source symbols emitted by source U (rate-
	distortion theory)
λ_1, λ_2	Eigenvalues of Harris corner matrix M
Λ	Two-dimensional (2D) spatial frequency vector
	$\Lambda := (\omega_x, \omega_y)$
m, n	Counter variables
М	Harris corner matrix
$M_{ m CRF}$	Minimum distance between feature points
$n_{\rm RDC}$	Number of frames in a group of frames
$\boldsymbol{n} = (x, y)^{\top}$	Point on the image plane in image coordinates
$\frac{n_s}{d_s}$	Surface normal vector, with d_s being the distance be-
-	tween the camera center and the surface
N_x, N_y	Number of sensor elements in <i>x</i> - and <i>y</i> -direction
N(f)	Distortion of a single source in rate-distortion theory
$\mathcal{N}(m_{\mathrm{G}}; v_{\mathrm{G}})$	Follows a Gaussian distribution with mean $m_{\rm G}$ and
	variance <i>v</i> _G
$N_{\rm P}(n_{ m G})$	Power of Gaussian noise $n_{\rm G}$
n _G	Gaussian noise
n _{mos}	Frame distance (long-term mosaicking)
ω_x, ω_y	Spatial frequencies in <i>x</i> - and <i>y</i> -direction
$\boldsymbol{p} = (x_c, y_c)^{T}$	Point on the image plane in sensor coordinates
$\tilde{\boldsymbol{p}} = (x_d, y_d)^{\top}$	Point on the image plane with lens distortion
p_k	Point on the image plane of camera C_k
$\hat{\boldsymbol{p}}_k$	Estimate of p_k through affine motion compensation
$\boldsymbol{P} = (X, Y, Z)^{\top}$	Point in world coordinates
$\ddot{\boldsymbol{P}} = (X_{\rm c}, Y_{\rm c}, Z_{\rm c})^{\top}$	Point in camera coordinates

	2D work at iter dawniter fam at an af the disult associate
$p_{\Delta X',\Delta Y'}(\Delta x,\Delta y)$	2D probability density function of the displacement
simp ϕ $(A x' A y')$	2D probability density function of the displacement
$P_{\Delta X'_{s},\Delta Y'_{s}}(\Delta x_{s},\Delta y_{s})$	2D probability density function of the displacement
r()	estimation error using a simplified affine model Drob shility density function of $($
$p(\cdot)$	Probability density function of (\cdot)
$p_{\bullet}(\cdot)$	General form of a probability density function of the
$\mathbf{P}(\mathbf{A})$	random process \bullet with the observations (·)
$P(\Lambda)$	Fourier transform of the displacement estimation er-
	ror
$q(q_1,q_2)', q$	Projective components of the homography
<i>r</i> , <i>r</i> _d	Radii of p and p to the center of distortion
$r_{11} \dots r_{33}$	Elements of R
$r_k(\mathbf{n})$	Pel-wise motion detection results of the frame <i>k</i>
R(D)	Bit rate R as a function of the distortion D (rate-
	distortion theory)
$^{simp}R\left({}^{simp}D \right)$	Bit rate <i>R</i> as a function of the distortion <i>D</i> using a
	simplified affine model (rate-distortion theory)
$R_{\rm G}(D)$	Bit rate R_G of a Gaussian source as a function of the
	distortion D (rate-distortion theory)
R _{ss}	Autocorrelation function of the video signal s
$R_{ss,iso}$	Isotropic autocorrelation function of the video signal s
$\rho_{ss,x}, \rho_{ss,y}$	Autocorrelation coefficients of the video signal s in x-
	and <i>y</i> -direction
$R = R_{\theta}R_{\nu}R_{\beta}$	Camera orientation matrix of size 3×3
S	Video signal
Ss	Scaling parameter of the simplified affine model
Sw, Sh	Width and height of the camera sensor
S_x, S_y	Width and height of one pel on the image sensor
ŝ	Predicted signal
s'	Reconstructed video signal
s*	Preprocessed signal
$\sigma_{A,A}^2$	Variances of $\Delta x'$ and $\Delta y'$ of the fully affine model
$\sigma^2 \sigma^2$	Variances of $\Lambda r'$ and $\Lambda v'$ of the simplified affine
$\sigma_{\Delta x'_s}, \sigma_{\Delta y'_s}$	model
σ^2	Variances of the error terms a_{i} , $i = \begin{bmatrix} 1 & 2 \end{bmatrix}$, $i = \begin{bmatrix} 1 & 2 & 2 \end{bmatrix}$
0 e _{ij}	variances of the error terms e_{ij} , $i = \{1, 2\}$, $j = \{1, 2, 5\}$
$\sigma_{\tilde{e}_{ij,\mathrm{mod}}}$	variance of the error terms $e_{ij,mod}$, $i = \{1,2\}$,
	$j = \{1,2,3\}$, representing the motion model error

σ_u^2	Variance of the source symbols <i>u</i>
σ_x, σ_y	Standard deviations of <i>x</i> and <i>y</i>
S _{CRF}	Threshold of corner response function
See	Power spectral density of the prediction error <i>e</i>
simp See	Power spectral density of the prediction error <i>e</i> using
	a simplified affine model
S(f)	Power spectral density
Sec	Power spectral density of the video signal s
t	Time
t	Translation vector component of a homography
Θ	Parameter that generates the function $R(D)$ by taking
0	on all positive real values (rate-distortion theory)
A	Rotation parameter of the simplified affine model
A A A	Rotation angles (of the camera)
T_{x} , T_{y} , T_{z}	Binarization and erosion thresholds of the noise filter
	Sequence of (unquantized) source symbols (rate-
u_1, u_2, \ldots, u_L	distortion theory)
ŭ	One specific source symbol (rate-distortion theory)
11 V 11 V	Arbitrary feature indices and positions
1, v , u , v	Time_discrete_amplitude_continuous_source_(rate_
0	distortion theory)
	Sequence of (quentized) code symbols (rete
v_1, v_2, \ldots, v_L	distortion theory)
ŭ	One specific code symbol (rate distortion theory)
	Show symmetric matrices induced by rotation around
w_x, w_y, w_z	the V V and Z avia
147	the A-, I-, and Z-axis
VV IAZ	Search window
W _H	Window in the Harris corner detector
VV _s	Coordinates in y and y direction (in nel)
x, y	Deutenhales in x- and y-direction (in per)
x, y	Perturbed x- and y-value
x^{\prime}, y^{\prime}	Perturbed x' - and y' -value
x_{s}, y_{s}	Perturbed x_s - and y_s -coordinates of the simplified
^ ^	affine model
$x_{\rm s}, y_{\rm s}$	Perturbed x- and y-value of the simplified affine
	model
x', y'	Projected/transformed <i>x</i> - and <i>y</i> -coordinates
$x'_{\rm s}, y'_{\rm s}$	Projected/transformed x - and y -coordinates of the
	simplified affine model

Abstract

Motion-compensated prediction is used in video coding standards like *High Efficiency Video Coding* (HEVC) as one key element of data compression. Commonly, a purely translational motion model is employed. In order to also cover non-translational motion types like rotation or scaling (zoom) contained in aerial video sequences such as captured from unmanned aerial vehicles, an affine motion model can be applied.

In this work, a model for affine motion-compensated prediction in video coding is derived by extending a model of purely translational motion-compensated prediction. Using the rate-distortion theory and the displacement estimation error caused by inaccurate affine motion parameter estimation, the minimum required bit rate for encoding the prediction error is determined. In this model, the affine transformation parameters are assumed to be affected by statistically independent estimation errors, which all follow a zero-mean Gaussian distributed probability density function (pdf). The joint pdf of the estimation errors is derived and transformed into the pdf of the location-dependent displacement estimation error in the image. The latter is related to the minimum required bit rate for encoding the prediction error. Similar to the derivations of the fully affine motion model, a four-parameter simplified affine model is investigated. It is of particular interest since such a model is considered for the upcoming video coding standard Versatile Video Coding (VVC) succeeding HEVC. As the simplified affine motion model is able to describe most motions contained in aerial surveillance videos, its application in video coding is justified. Both models provide valuable information about the minimum bit rate for encoding the prediction error as a function of affine estimation accuracies.

Although the bit rate in motion-compensated prediction can be considerably reduced by using a motion model which is able to describe motion types occurring in the scene, the total video bit rate may remain quite high, depending on the motion estimation accuracy. Thus, at the example of aerial surveillance sequences, a codec independent region of interest- (ROI-) based aerial video coding system is proposed that exploits the characteristic of such sequences. Assuming the captured scene to be planar, one frame can be projected into another using global motion compensation. Consequently, only new emerging areas have to be encoded. At the decoder, all new areas are registered into a so-called mosaic. From this, reconstructed frames are

extracted and concatenated as a video sequence. To also preserve moving objects in the reconstructed video, local motion is detected and encoded in addition to the new areas. The proposed general ROI coding system was evaluated for very low and low bit rates between 100 and 5000 kbit/s for aerial sequences of HD resolution. It is able to reduce the bit rate by 90 % compared to common HEVC coding of similar quality. Subjective tests confirm that the overall image quality of the ROI coding system exceeds that of a common HEVC encoder especially at very low bit rates below 1 Mbit/s.

To prevent discontinuities introduced by inaccurate global motion estimation—as may be caused by radial lens distortion—a fully automatic in-loop radial distortion compensation is proposed. For this purpose, an unknown radial distortion compensation parameter that is constant for a group of frames is jointly estimated with the global motion. This parameter is optimized to minimize the distortions of the projections of frames in the mosaic. By this approach, the global motion compensation was improved by 0.27 dB and discontinuities in the frames extracted from the mosaic are diminished. As an additional benefit, the generation of long-term mosaics becomes possible, constructed by more than 1500 aerial frames with unknown radial lens distortion and without any calibration or manual lens distortion compensation.

Keywords: video coding, affine motion-compensated prediction (MCP), simplified affine motion-compensated prediction, rate-distortion theory, aerial surveillance, global motion compensation (GMC), region of interest- (ROI-) based aerial video coding, moving object detection, long-term mosaicking, radial distortion compensation

Kurzfassung

Bewegungskompensierte Prädiktion wird in Videocodierstandards wie *High Efficiency Video Coding* (HEVC) als ein Schlüsselelement zur Datenkompression verwendet. Typischerweise kommt dabei ein rein translatorisches Bewegungsmodell zum Einsatz. Um auch nicht-translatorische Bewegungen wie Rotation oder Skalierung (Zoom) beschreiben zu können, welche beispielsweise in von unbemannten Luftfahrzeugen aufgezeichneten Luftbildvideosequenzen enthalten sind, kann ein affines Bewegungsmodell verwendet werden.

In dieser Arbeit wird aufbauend auf einem rein translatorischen Bewegungsmodell ein Modell für affine bewegungskompensierte Prädiktion hergeleitet. Unter Verwendung der Raten-Verzerrungs-Theorie und des Verschiebungsschätzfehlers, welcher aus einer inexakten affinen Bewegungsschätzung resultiert, wird die minimal erforderliche Bitrate zur Codierung des Prädiktionsfehlers hergeleitet. Für die Modellierung wird angenommen, dass die sechs Parameter einer affinen Transformation durch statistisch unabhängige Schätzfehler gestört sind. Für jeden dieser Schätzfehler wird angenommen, dass die Wahrscheinlichkeitsdichteverteilung einer mittelwertfreien Gaußverteilung entspricht. Aus der Verbundwahrscheinlichkeitsdichte der Schätzfehler wird die Wahrscheinlichkeitsdichte des ortsabhängigen Verschiebungsschätzfehlers im Bild berechnet. Letztere wird schließlich zu der minimalen Bitrate in Beziehung gesetzt, welche für die Codierung des Prädiktionsfehlers benötigt wird. Analog zur obigen Ableitung des Modells für das voll-affine Bewegungsmodell wird ein vereinfachtes affines Bewegungsmodell mit vier Freiheitsgraden untersucht. Ein solches Modell wird derzeit auch im Rahmen der Standardisierung des HEVC-Nachfolgestandards Versatile Video Coding (VVC) evaluiert. Da das vereinfachte Modell bereits die meisten in Luftbildvideosequenzen vorkommenden Bewegungen abbilden kann, ist der Einsatz des vereinfachten affinen Modells in der Videocodierung gerechtfertigt. Beide Modelle liefern wertvolle Informationen über die minimal benötigte Bitrate zur Codierung des Prädiktionsfehlers in Abhängigkeit von der affinen Schätzgenauigkeit.

Zwar kann die Bitrate mittels bewegungskompensierter Prädiktion durch Wahl eines geeigneten Bewegungsmodells und akkurater affiner Bewegungsschätzung stark reduziert werden, die verbleibende Gesamtbitrate kann allerdings dennoch relativ hoch sein. Deshalb wird am Beispiel von Luftbildvideosequenzen ein Regionenvon-Interesse- (ROI-) basiertes Codiersystem vorgeschlagen, welches spezielle Eigenschaften solcher Sequenzen ausnutzt. Unter der Annahme, dass eine aufgenommene Szene planar ist, kann ein Bild durch globale Bewegungskompensation in ein anderes projiziert werden. Deshalb müssen vom aktuellen Bild prinzipiell nur noch neu im Bild erscheinende Bereiche codiert werden. Am Decoder werden alle neuen Bildbereiche in einem gemeinsamen Mosaikbild registriert, aus dem schließlich die Einzelbilder der Videosequenz rekonstruiert werden können. Um auch lokale Bewegungen abzubilden, werden bewegte Objekte detektiert und zusätzlich zu neuen Bildbereichen als ROI codiert. Die Leistungsfähigkeit des ROI-Codiersystems wurde insbesondere für sehr niedrige und niedrige Bitraten von 100 bis 5000 kbit/s für Bilder in HD-Auflösung evaluiert. Im Vergleich zu einer gewöhnlichen HEVC-Codierung kann die Bitrate um 90 % reduziert werden. Durch subjektive Tests wurde bestätigt, dass das ROI-Codiersystem insbesondere für sehr niedrige Bitraten von unter 1 Mbit/s deutlich leistungsfähiger in Bezug auf Detailauflösung und Gesamteindruck ist als ein herkömmliches HEVC-Referenzsystem.

Um Diskontinuitäten in den rekonstruierten Videobildern zu vermeiden, die durch eine durch Linsenverzeichnungen induzierte ungenaue globale Bewegungsschätzung entstehen können, wird eine automatische Radialverzeichnungskorrektur vorgeschlagen. Dabei wird ein unbekannter, jedoch über mehrere Bilder konstanter Korrekturparameter gemeinsam mit der globalen Bewegung geschätzt. Dieser Parameter wird derart optimiert, dass die Projektionen der Bilder in das Mosaik möglichst wenig verzerrt werden. Daraus resultiert eine um 0.27 dB verbesserte globale Bewegungskompensation, wodurch weniger Diskontinuitäten in den aus dem Mosaik rekonstruierten Bildern entstehen. Dieses Verfahren ermöglicht zusätzlich die Erstellung von Langzeitmosaiken aus über 1500 Luftbildern mit unbekannter Radialverzeichnung und ohne manuelle Korrektur.

Stichwörter: Videocodierung, affine bewegungskompensierte Prädiktion, vereinfachte affine bewegungskompensierte Prädiktion, Raten-Verzerrungs-Theorie, Luftbildüberwachung, globale Bewegungskompensation, Regionen-von-Interesse-(ROI-) basierte Luftbildcodierung, Bewegtobjektdetektion, Langzeitmosaikerstellung, Radialverzeichnungskorrektur