Fortschritt-Berichte VDI

VDI

Reihe 3

Verfahrenstechnik

Dipl.-Ing. Matthias Johannink, Köln

Nr. 949

Model-based and Experimental Analysis of Transient Electrodialysis Processes

Berichte aus der Aachener Verfahrenstechnik - Prozesstechnik

RWTH Aachen University

Generiert durch IP '18.118.132.146', am 03.05.2024, 10:44:06. s Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässi

https://doi.org/10.51202/9783186949035-I Generiert durch IP '18.118.132.146', am 03.05.2024, 10:44:06. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig.

Model-based and Experimental Analysis of Transient Electrodialysis Processes

Von der Fakultät für Maschinenwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Matthias Johannink

Berichter: Universitätsprofessor Dr.-Ing. Wolfgang Marquardt Universitätsprofessor Dr.-Ing. Mathias Wessling

Tag der mündlichen Prüfung: 26.11.2015

https://doi.org/10.51202/9783186949035-I Generiert durch IP '18.118.132.146', am 03.05.2024, 10:44:06. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig.

Fortschritt-Berichte VDI

Reihe 3

Verfahrenstechnik

Dipl.-Ing. Matthias Johannink, Köln

Model-based and Experimental Analysis of Transient Electrodialysis Processes

Berichte aus der Aachener Verfahrenstechnik - Prozesstechnik

RWTH Aachen University

https://doi.org/10.51202/9783186949035-1 Generiert durch IP '18.118.132.146', am 03.05.2024, 10:44:06. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

Johannink, Matthias Model-based and Experimental Analysis of Transient Electrodialysis Processes

Fortschr.-Ber. VDI Reihe 3 Nr. 949. Düsseldorf: VDI Verlag 2016. 190 Seiten, 61 Bilder, 25 Tabellen. ISBN 978-3-18-394903-8, ISSN 0178-9503, € 67,00/VDI-Mitgliederpreis € 60,30.

Keywords: Electrodialysis – Transient processes – Modelling – Ionic mass transport – Partial differential-algebraic equations – Index analysis – Model-based and experimental analysis – High performance computing

This thesis is concerned with the integration of a model-based and experimental analysis for the systematic investigation of transient electrodialysis (ED) processes. In this context a mechanistic process model for transient ED systems is developed which is based on a rigorous dynamic description of the underlying ionic transport processes. Important requirements for a systematic model development are elaborated in a systematic manner. This includes the development of a new method for the characterization of partial differential-algebraic equations and an experimental sensitivity analysis of a transient electrodialysis system. The findings can easily be generalized to related electrochemical processes such as fue cells or batteries. By this means this work provides important results for scientist and engineers in the fields of mechanistic modeling, electromembrane processes and electrochemical systems.

Bibliographische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet unter <u>http://dnb.ddb.de</u> abrufbar.

Bibliographic information published by the Deutsche Bibliothek

(German National Library) The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie (German National Bibliography); detailed bibliographic data is available via Internet at <u>http://dnb.ddb.de.</u>

D82 (Diss. RWTH Aachen University, 2015)

© VDI Verlag GmbH · Düsseldorf 2016

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe (Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung, vorbehalten.

Als Manuskript gedruckt. Printed in Germany. ISSN 0178-9503 ISBN 978-3-18-394903-8

https://doi.org/10.51202/9783186949035-I Generiert durch IP '18.118.132.146', am 03.05.2024, 10:44:06. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig.

Vorwort

Diese Arbeit entstand im Rahmen meiner Tätigkeit als wissenschaftlicher Mitarbeiter der Aachener Verfahrenstechnik - Prozesstechnik an der RWTH Aachen. Sie wurde in Teilen durch die Max-Buchner-Stiftung und vom Bundesministerium für Bildung und Forschung (BMBF) im Rahmen der HPC Softwareinitiative im Projekt *HISEEM* gefördert. Elemente dieser Arbeit wurden vorab veröffentlicht in Johannink et al. (2010, 2015, 2011, 2016b,c).

Mein erster und besonderer Dank gilt meinem Doktorvater Prof. Dr.-Ing. Wolfgang Marquardt. Seine engagierte Unterstützung, die zahlosen Anregungen und seine stete Begeisterung waren wichtige Vorraussetzungen für das Gelingen dieser Arbeit. Des Weiteren möchte ich Prof. Dr.-Ing. M. Wessling für die Übernahme des Mitberichts, Prof. R. A. Sauer, Ph.D. für die Übernahme des Beisitzes und Prof. Dr. rer. nat. A. Schuppert für die Übernahme des Vorsitzes der Prüfungskomission danken.

Für die gute fachliche Zusammenarbeit im Projekt *HISEEM* möchte ich Prof. Dr.-Ing. Sabine Roller und Harald Klimnach meinen Dank aussprechen. Ein besonderes Dankeschön geht hier an Jens Zudrop und Kanan Masilamani für die ausgezeichnete kollegiale Zusammenarbeit, die mir fachlich sehr geholfen und mir stets viel Freude bereitet hat.

Für die gute Zusammenarbeit und die stets nette Atmosphäre möchte ich allen Mitarbeitern der Aachener Verfahrenstechnik - Prozesstechnik danken. Stellvertretend für alle möchte ich Manuel Dahmen, Juan Villeda, Fady Assassa und Mirko Skiborowski für den intensiven Austausch zu fachlichen und nicht-fachlichen Themen und die vielen gemeinsam verbrachten Stunden danken. Ein besonderer Dank gilt Adel Mhamdi für die lange und intensive Zusammenarbeit.

Eine große Hilfe waren die studentischen Hilfskräfte, die mit großem Engagement meine Forschungsarbeiten unterstützen. Für die lange Zusammenarbeit möchte ich hier Johannes Brenner, Robert Pack, Lukas Mertens, Marc-Alexander Drosner, Florian Tran, Thomas Berners und Christian Tomala besonders danken.

Den größten und schwer in Worte zu fassenden Dank möchte ich meinen Eltern und meiner Frau Judith aussprechen. Ohne eure enorme Unterstützung und eure unendliche Geduld wäre das Gelingen dieser Arbeit nicht möglich gewesen.

Köln, im März 2015

Matthias Johannink

für Judith und meine Eltern

Contents

No	Nomenclature IX Kur <i>z</i> fassung 1				
Kι					
1	Intr	oductio	'n	4	
	1.1	Funda	mentals of electrodialysis processes	4	
		1.1.1	Ion exchange membranes	6	
		1.1.2	Spacer-filled flow channels	6	
		1.1.3	Secondary transport effects	7	
	1.2	Ionic 1	mass transport and process performance	8	
		1.2.1	Module and spacer design	8	
		1.2.2	Transient electrodialysis processes	9	
	1.3	Model	ing ionic mass transport and electrodialysis processes	10	
		1.3.1	Investigation of spacers by CFD methods	10	
		1.3.2	Modeling of ion exchange membranes	11	
		1.3.3	Electrodialysis process modeling	11	
		1.3.4	Modeling ionic mass-transport in a homogenous phase	13	
	1.4	Conclu	usions and scope of this work	14	
2	Exp	erimen	tal analysis of electrodialysis process dynamics	17	
	2.1	Exper	imental set-up and methods	17	
		2.1.1	Experimental set-up	17	
		2.1.2	Batch desalination experiments	19	
		2.1.3	Current-voltage experiments	19	
		2.1.4	Degrees of freedom, measurements and performance measures	19	
	2.2	Scope	of the experimental study	20	
	2.3	Curre	nt-voltage behavior	22	
	2.4	Sensit	ivities with respect to operational and design parameters	25	
		2.4.1	Applied current	25	
		2.4.2	Volumetric flow rate	28	
		2.4.3	Comparison of different spacers	28	
		2.4.4	Discussion	30	
	2.5	Opera	tion with transient applied currents	31	

	2.6	ED with pulsed current	33
		2.6.1 Desalination of $NaCl$ solution using a pulsed applied current	33
		2.6.2 Desalination of $NaCl - Na_2SO_4$ solution using a pulsed applied current	37
		2.6.3 Discussion	37
	2.7	Conclusions	40
3	Inde	x analysis and reduction of PDAE systems	42
	3.1	Introduction	42
	3.2	Index concepts for DAE and PDAE systems $\hdots \hdots \h$	46
		3.2.1 Index concepts for DAE systems	46
		3.2.2 Index concepts for PDAE systems	49
		3.2.3 Comparison of the index concepts for PDAE systems	53
	3.3	Index analysis and reduction for semi-explicit PDAE systems $\hfill \hfill \hf$	54
		3.3.1 Differential index	54
		3.3.2 Index analysis	55
		3.3.3 Generalization of the index reduction algorithm $\ldots \ldots \ldots \ldots \ldots$	56
		3.3.4 Systematic procedure for the index analysis and reduction $\ldots \ldots \ldots$	58
	3.4	Index analysis and reduction in the modeling work flow $\hfill \hfill \ldots \hfill \hfill$	60
		3.4.1 Physical interpretation of the reformulated model	60
		3.4.2 Identification of consistent initial and boundary conditions	61
	3.5	Conclusions	64
4	Mod	deling of ionic transport in electrolytes	66
	4.1	Modeling equations and theoretical framework	66
		4.1.1 Species balance equations and definition of the reference velocity \ldots .	67
		4.1.2 Constitutive equations	68
		4.1.3 Momentum balance equation and hydrodynamics $\ldots \ldots \ldots \ldots \ldots$	72
		4.1.4 Complete mathematical models	73
	4.2	Index analysis and reduction	74
		4.2.1 Index with respect to time	75
		4.2.2 Index with respect to the spatial coordinates	76
		4.2.3 Reformulated low index model	77
	4.3	Reduced system and consistent initial and boundary conditions $\ldots \ldots \ldots \ldots$	79
		4.3.1 Reformulation into a reduced system of PDE	79
		4.3.2 Initial and boundary conditions	81
	4.4	Conclusions	82
5	A dy	ynamic process model of an electrodialysis plant	84
	5.1	Hierarchical model structure and model components $\hfill \ldots \ldots \ldots \ldots \ldots$	84
		5.1.1 General modeling assumptions	85
		5.1.2 Spacer-filled flow channels and ion exchange membranes $\ldots \ldots \ldots \ldots$	86

		5.1.3	Electrodes and plant periphery	89
		5.1.4	Interface models and coupling of model components	90
	5.2	Proble	em specification and implementation	92
		5.2.1	Degrees of freedom and model parameters	92
		5.2.2	Implementation	93
	5.3	Model	l-based analysis of dynamic transport effects	94
		5.3.1	Dynamics in pulsed-current electrodialysis	94
		5.3.2	Discrimination of transport resistances	97
		5.3.3	Competitive transport in pulsed current experiments	100
		5.3.4	Discussion	101
	5.4	Comp	arison with experimental data	102
		5.4.1	Current-voltage experiments	102
		5.4.2	Batch desalination experiments	105
	5.5	Conclu	usions	108
6	S no.		metry and process performance	111
0	5pa	Towor	an integrated description of hydrodynamics and ionic mass transport	111
	0.1 6.2	Mothe	ds an integrated description of nydrodynamics and fonic mass transport	112
	0.2	6 9 1	Dus	110
		0.2.1 6 9 9	Competition modeling of the masser and simulation scenario	113
		6.2.2	Software and implementation	114
		6.2.5	Software and implementation	116
		6.2.5	Work flow for model identification	117
		0.2.5 6.2.6	Beremeter estimation identification	110
	6.2	0.2.0	rarameter estimation, identifiability analysis and design of experiments	110
	0.5	6 2 1	Velocity profiles	121
		620	Process does profiles	121
		6.2.2	Comparison with an azimantal data	122
	64	Identii	fraction of friction factor models for verying design perspectators	122
	0.4	6 4 1	Non-worken spacers	123
		642	Woven spacer	125
		643	Predigtive consulting of the identified program drop models	120
	65	Summ	relative capabilities of the ruentined pressure drop models	130
	0.5	əunn		101
7	Con	cluding	g remarks	134
	7.1	Summ	nary	134
	7.2	Outlo	ok	136
Ap	openc	lices		139

Α	Geo	metrical properties and reproducibility of the experiments 1	40
	A.1	Geometric properties of the lab-scale ED plant	140
	A.2	Repeatability and measurement error	140
		A.2.1 Pulsed current	141
		A.2.2 Mixture experiments	143
		A.2.3 Current-voltage experiments	143
	A.3	Overview current-voltage experiments	143
	A.4	Desalination experiments	145
в	Phy	sico-chemical property models for electrolytes 1	48
	B.1	Conversion of different reference velocities	148
	B.2	Conversion of activity coefficients	148
	B.3	Multi-component density model	149
	B.4	Maxwell-Stefan diffusion coefficients for aqueous electrolyte solutions	150
		B.4.1 MS coefficients of ion-ion pairs	151
		B.4.2 MS coefficients of ion-water pairs	152
	B.5	Model parameters	152
с	Resu	Ilts of pressure drop model identification 1	54
	C.1	Geometric parameters of the spacer geometries in the basis data set	154
	C.2	Parameter estimates for the final friction coefficient model for the non-woven and	
		woven spacer	155
	C.3	Model candidates for the identification of a generalized pressure drop model $\ . \ . \ .$	156
Bil	oliogi	raphy 1	61

Nomenclature

Abbreviations

AEM	cation exchange membrane
CEM	anion exchange membrane
CFD	computational fluid dynamics
DAE	differential-algebraic equations
DOE	design of experiments
DOF	degrees of freedom
ED	electrodialysis
IEM	ion exchange membrane
LBM	Lattice Boltzmann method
MOL	method of lines
ODE	ordinary differential equations
PDAE	partial differential-algebraic equations
PDE	partial differential equations

Greek Symbols

Symbol	Description	\mathbf{Units}
η	overpotential of the electrode reactions	V
Г	matrix of basis vectors of the nullspace	
γ_k	concentration based activity coefficient of species k	-
Γ_{kj}	thermodynamic factor	-
κ	electric conductivity	Ωm
μ_k^0	standard potential of species k	$\frac{J}{mol}$
μ_k	chemical potential of species k	$\frac{J}{mol}$
ν	kinematic viscosity	Pas
ν_d	differential index	

ν_p	perturbation index	
$\nu_{d,j}$	differential index with respect to ζ_j	
Ω	coefficient matrix defined by Eqs. (4.112), (4.113), (4.115) and (4.116)	
ω	states of PDAE system)	
ω_k	mass fraction of species κ	-
Ψ_k	total flux density of species k	$\frac{mol}{m^2 s}$
ρ^e	electric charge density	$\frac{C}{m}$
ζ	vector of independent variables	
α	flow attack angle	0
β	angle between filaments	0
$\Delta \theta_k$	confidence intervals	-
ρ	density	$\frac{kg}{m^3}$
σ	standard deviation of measurements	-
ζ^{MUSUBI}	friction coefficient predicted by MUSUBI	-
ζ^{sp}	friction coefficient of the spacer	-
ϕ	electric potential	V
δ	boundary layer thickness	m

Roman Symbols

\mathbf{Symbol}	Description	\mathbf{Units}
AIC_i	Akaike criterion	-
А	Debye-Hueckel constant	$\sqrt{\frac{kg}{mol}}$
в	matrix defined in Eq. 4.26	
с	concentration vector	$\frac{mol}{m^3}$
c_f	correction factor	-
c_k	molar density of species k	$\frac{mol}{m^3}$
c_T	total molar concentration	$\frac{mol}{m^3}$
C_{kj}	binary Bromley interaction parameter	$\frac{mol}{kg}$
d^{st}	depth of the stack	m
d_f	filament diameter	m
d_g	characteristic diameter	m

D_{kl}	Maxwell-Stefan diffusion coefficient	$\frac{m^2}{s}$
Е	electric field	$\frac{V}{m}$
F	Fischer information matrix	-
F	Faraday constant	$\frac{As}{mol}$
$\bar{\mathbf{G}}$	Jacobian matrix	-
н	Hessian matrix	-
i	electric current density	$\frac{A}{m^2}$
Ι	electric current	А
IS	ionic strength	$\frac{mol}{m^3}$
J	flux density tensor	$\frac{mol}{m^2 s}$
\mathbf{J}_k	molar diffusive flux density of species \boldsymbol{k}	$\frac{mol}{m^2s}$
K_j	equilibrium constant of reaction j	$\frac{mol}{m^3 s}$
l_m	orthogonal distance of filaments	m
l_{ch}	channel length	m
M_k	molar weight of species k	$\frac{kg}{mol}$
n^{sp}, m^{sp}	model parameters in the friction coefficient	-
, k	model	
$\mathbf{\tilde{p}}^{n}$	empirical model parameters	-
р	parameter vector	
p	total pressure	\mathbf{Pa}
$p_{tp,i}$	averaged total pressure at tracking plane i	Pa
Q	volumetric flow rate	$\frac{m^3}{s}$
r_j^0	normalized reactions rate of reaction j	$\frac{mol}{m^3 s}$
r_k^V	volumetric reaction flux density of species \boldsymbol{k}	$\frac{mol}{m^3 s}$
R^{circ}	resistance of the electric circuit	Ω
R^{ERS}	resistance of the electrolyte rinsing solution	Ω
Re	Reynolds number	-
RSSCV	averaged root mean square error	-
R	molar gas constant	$\frac{J}{kgK}$
Sc	Schmidt number	=
Sh	Sherwood number	-
t	time	S

Т	temperature	Κ
u	vector of system inputs	
\mathbf{u}^k	geometric design parameters	-
U	electric potential difference at the electrodes	V
U^{cell}	potential drop from the transport in the ED cell	V
U^{er}	potential drop from the electrode reactions	V
V	volume in the storage tanks	m^3
v	reference velocity	$\frac{m}{s}$
\mathbf{v}^{bar}	barycentric reference velocity	$\frac{m}{s}$
\mathbf{v}^{va}	volume-averaged reference velocity	$\frac{m}{s}$
\mathbf{v}_k	absolute velocity of species k	$\frac{m}{s}$
\tilde{V}_k	infinite dilution partial molar volume of species ${\it k}$	$\frac{m^3}{mol}$
V^E	excess volume of the mixture	$\frac{m^3}{mol}$
v_{ch}	mean velocity	$\frac{m}{s}$
w	differential states in pseudo-DAE (3.21) , (3.22)	
w_k^{bar}	weighting factor for the barycentric velocity	$\frac{kg}{mol}$
w_k^{va}	weighting factor for the volume-averaged veloc- ity	$\frac{m^3}{mol}$
w_k	weighting factor of species k	
w_{ch}	channel widths	m
$w_{i,c}$	Akaike weights w.r.t. model c	-
x	spatial coordinates	m
\mathbf{y}_1	first group of algebraic states in pseudo-DAE (3.21), (3.22)	
\mathbf{y}_2	second group of algebraic states in pseudo- DAE (3.21) , (3.22)	
z	state vector	
z_k	specific charge number of species k	-

Kurzfassung

Die Elektrodialyse (ED) wird in industriellen Anwendungen als Trennprozess zur Entsalzung von Brack- und Meerwasser sowie zur Isolation von Säuren und Metallen eingesetzt (Huang et al., 2007, Valero and Arbós, 2010). Hierbei werden Ionenaustauschermembranen (IEM) und ein von Arbeitselektroden induziertes elektrisches Feld eingesetzt, um einen ladungsselektiven Transport ionischer Spezies zu ermöglichen. Die Intensität dieser lokalen Transportprozesse ionischer Spezies in einem elektrischen Feld bestimmt maßgeblich den spezifischen Energieverbrauch und damit das ökonomische Potential des Prozesses (Strathmann, 2004).

Obwohl der ED-Prozess bereits seit Jahrzehnten industriell genutzt wird, sind wichtige Mechanismen der zugrundeliegenden Transportprozesse noch weitestgehend unverstanden (Nikonenko et al., 2010, Strathmann, 2010). Dadurch ist nur sehr begrenzt grundlegendes Wissen zum Prozessverhalten verfügbar, insbesondere wenn der Prozess zur Behandlung komplexer Elektrolytlösungen, wie z.B. Meerwasser, eingesetzt wird. Zudem fehlt eine geeignete Wissensbasis für einen systematischen konzeptionellen Entwurf von ED-Prozessen, insbesondere in neuen Anwendungsbereichen.

Die bestehenden Limitationen im Hinblick auf das Verständnis der zugrunde liegenden Mechanismen sind besonders ausgeprägt, wenn das dynamische Verhalten in transient betriebenen ED-Prozessen betrachtet wird. Der transiente Betrieb von ED-Prozessen wird als viel versprechende Option zur Steigerung der Effizienz von ED-Prozessen angesehen (Malek et al., 2013, Strathmann, 2010). Das diesbezügliche Potential ist jedoch noch weitestgehend unklar, da der Einfluss dynamischer Phänomene auf die Intensität des Stofftransports weitestgehend unverstanden ist.

Das stark begrenzte Prozessverständnis ist zum einen auf die starke Kopplung der verschiedenen dem Prozess zugrunde liegenden Mechanismen zurückzuführen. Hierdurch kann es nur in einer systematischen umfassenden Analyse unter Berücksichtigung aller wesentlichen Phänomene und Wechselwirkungen gelingen, tiefgreifendes Prozessverständnis aufzubauen. Zum anderen sind Elektrodialysesysteme üblicherweise durch eine sehr kompakte Bauform charakterisiert. Diese stellt eine bedeutende Herausforderung für eine experimentelle Analyse der zugrunde liegenden Mechanismen dar.

Die Identifikation detaillierter mechanistischer Modelle für Elektrodialyseprozesse kann einen wesentlichen Beitrag zu einem tieferen Verständnis der zugrunde liegenden Transportprozesse und des Prozessverhaltens leisten (Kuppinger et al., 1995). Zielgerichtete Simulationsstudien und Sensitivitätsanalysen ermöglichen die Analyse wichtiger Zusammenhänge zwischen zugrunde liegenden lokalen Phänomenen und dem integralen Prozessverhalten. Darüber hinaus können die identifizierten Modelle als Basis für optimierungsbasierte Ansätze zum Entwurf und zur Steuerung von Elektrodialyseprozessen genutzt werden.

Bislang verfolgte Ansätze zur Modellierung von ED-Prozessen sind überwiegend durch stark vereinfachende Annahmen gekennzeichnet. So werden in der Regel quasi-stationäre Verhältnisse vorausgesetzt und die Beschreibung von Transportprozessen auf eine örtliche Koordinate beschränkt (Kraaijeveld et al., 1995, Visser, 2001). Insbesondere die Beschränkung auf quasistationäre Verhältnisse macht diese Modelle ungeeignet zur Beschreibung transienter Elektrodialyseprozesse. Ein umfassendes Prozessmodell, welches über eine rigorose dynamische Beschreibung der zugrunde liegenden Transportprozesse insbesondere das dynamische Prozessverhalten akkurat beschreiben kann, ist nicht verfügbar.

In dieser Arbeit wird ein integrierter modellbasierter und experimenteller Ansatz verfolgt, um einen Zugang zu einem tiefgreifenden Verständnis der zugrunde liegenden Transportprozesse in transienten ED-Prozessen zu eröffnen. Ein wesentliches Ergebnis ist hierbei die Entwicklung eines mechanistischen Prozessmodells für transiente ED-Systeme. Hierbei wird die bisherige Einschränkung auf pseudo-stationäres Verhalten durch die Ausarbeitung einer adäquaten dynamischen Beschreibung der zugrunde liegenden Transportprozesse überwunden. Darüber hinaus wird die eindimensionale Beschreibung der Transportprozesse durch das Zugrundelegen einer mehrdimensionalen Beschreibung des Stofftransports verallgemeinert. Damit wird es erstmalig möglich, transiente Elektrodialyseprozesse mit einem dynamischen mechanistischen Prozessmodell zu beschreiben.

Um der Komplexität des Prozesses und der zugrunde liegenden Phänomene Rechnung zu tragen, werden wesentliche Voraussetzungen für die Entwicklung des generalisierten Prozessmodells systematisch erarbeitet. Hierbei werden zunächst in einer experimentellen Analyse mit einer transient betriebenen Elektrodialyseanlage die wesentlichen Merkmale des dynamischen Prozessverhaltens ermittelt. Dabei werden erstmalig auch die Sensitivitäten des dynamischen Prozessverhaltens im Hinblick auf wesentliche Steuer- und Auslegungsgrößen des Prozesse systematisch analysiert.

Eine weitere zentrale Voraussetzung für eine erfolgreiche Modellentwicklung ist eine verlässliche mathematische Charakterisierung sämtlicher Modellteile und des finalen generalisierten Prozessmodells. Eine besondere Rolle nehmen hierbei die verwendeten Stofftransportmodelle ein, da sie im Wesentlichen die Komplexität des Gesamtmodells bestimmen. Hierbei ist zu berücksichtigen, dass die Charakterisierung der in bisherigen Arbeiten verwendeten stark vereinfachten Stofftransportmodelle aufgrund ihrer einfachen Struktur keine besondere Herausforderung darstellt. Der Charakterisierung der in dieser Arbeit zugrunde gelegten detaillierten Stofftransportmodelle in Form von Systemen partieller differential-algebraischer Gleichungen (PDAE) muss jedoch besondere Beachtung geschenkt werden (Martinson and Barton, 2001a, Neumann and Pantelides, 2008). Vor diesem Hintergrund besteht ein wesentlicher Beitrag in der Entwicklung einer neuen Methode zur Charakterisierung und Reformulierung allgemeiner PDAE Systeme. Die Grundlage bildet dabei das Konzept der Analyse und Reduktion der differentiellen Indices von PDAE Systemen.

Die neue Methode zur Charakterisierung und Reformulierung von PDAE Systemen bildet die Grundlage für die Entwicklung detaillierter Modelle zur dynamischen Beschreibung der lokalen Stofftransportprozesse. Das Ziel ist hierbei, Modelle zu erhalten, die zum einen durch einen hohen Detaillierungsgrad charakterisiert sind und sich zum anderen durch einen strukturellen Aufbau auszeichnen, der für allgemeine numerische Verfahren geeignet ist. Hierdurch können die Stofftransportmodelle effizient für die Entwicklung des generalisierten Prozessmodells genutzt werden.

Ein Schwerpunkt der Entwicklung des finalen generalisierten Prozessmodells ist die Integration verschiedener Teilmodelle in einer geeigneten hierarchischen Modellstruktur. Eine wichtige Maßgabe ist hierbei, dass verschiedene Prozesskonfigurationen effizient abgebildet werden können. Dies ermöglicht im Rahmen dieser Arbeit einen ersten Vergleich mit Daten aus unterschiedlichen Experimenten. Hierbei kann gezeigt werden, dass das entwickelte Modell insbesondere das transiente Betriebsverhalten qualitativ gut abbilden kann. Eine systematische Analyse der Modellprädiktion für unterschiedliche Betriebsmoden zeigt zudem, dass das Modell wichtige Zusammenhänge zwischen integralem Prozessverhalten und zugrunde liegenden Transportprozessen aufzeigen kann.

Abschließend werden die im Prozessmodell zugrunde gelegten Transportmodelle vor dem Hintergrund einer weiteren Erhöhung des Detaillierungsgrades betrachtet. Hierbei wird das Ziel verfolgt, langfristig die rigorose Beschreibung des Stofftransports mit einer detaillierten dreidimensionalen Beschreibung der Hydrodynamik zu koppeln. Dafür wird derzeit in einem interdisziplinären Forschungsvorhaben ein effizientes Softwaretool zur numerischen Behandlung der hochgradig detaillierten Modelle auf Höchstleistungsrechnern entwickelt. Weit vorangeschritten ist hierbei die Entwicklung eines Tools zur numerischen Strömungssimulation auf der Basis des Lattice-Boltzmann-Ansatzes. Dies ermöglicht insbesondere eine Betrachtung der Einflüsse geometrischer Auslegungsgrößen auf die Prozesseffizienz. Die quantitativen Beziehungen zwischen Kenngrößen der Prozesseffizienz und der Vielzahl von Auslegungsgrößen können effizient in einfachen algebraischen Modellen abgebildet werden. Für die Identifikation solcher Modelle aus den detaillierten Simulationsergebnissen wird im Rahmen dieser Arbeit ein systematischer Arbeitsprozess entwickelt. Dieser auf optimierungsbasierten Methoden beruhende Ansatz wird am Beispiel der Identifikation algebraischer Druckverlustmodelle aus detaillierten Simulationsergebnissen demonstriert.

Mit dem hier verfolgten integrierten Ansatz einer modellbasierten und experimentellen Analyse wird ein wesentlicher Beitrag zu einem besseren Verständnis transient betriebener Elektrodialyseprozesse geleistet. Insbesondere das entwickelte dynamische Prozessmodell auf der Basis detaillierter mehrdimensionaler Transportmodelle ermöglicht es, das experimentell gemessene integrale transiente Prozessverhalten systematisch zu analysieren. Durch den Einsatz vorwiegend rigoroser Modelle und universeller Paradigmen der Modellbildung sind die Ergebnisse dieser Arbeit in einem weiten Rahmen übertragbar auf ähnliche elektrochemische Prozesse wie Brennstoffzellen oder Batterien. Darüber hinaus sind die entwickelten Methoden zur Analyse und Reformulierung von PDAE-Systemen sowie zur effizienten Identifikation algebraischer Modelle aus detaillierten Simulationsergebnissen auch außerhalb des Anwendungsfeldes von Elektromenbranverfahren nutzbar.