Fortschritt-Berichte VDI

VDI

Reihe 3 Verfahrenstechnik

Dipl.-Ing. Sebastian Recker, Düsseldorf

Nr. 951

Systematic and Optimization-Based Synthesis and Design of Chemical Processes

Berichte aus der Aachener Verfahrenstechnik - Prozesstechnik

RWTH Aachen University

Generiert durch IP '3.145.111.183', tellen und Weitergeben von Kopie 1038-I 024, 19:01:36. DFs ist nicht zulässig.

https://doi.org/10.51202/9783186951038-I Generiert durch IP '3.145.111.183', am 27.04.2024, 19:01:36. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

Systematic and Optimization-Based Synthesis and Design of Chemical Processes

Systematischer und optimierungsbasierter Entwurf chemischer Prozesse

Von der Fakultät für Maschinenwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Sebastian Recker

Berichter: Universitätsprofessor Dr.-Ing Wolfgang Marquardt Universitätsprofessor Dr.-Ing Hannsjörg Freund

Tag der mündlichen Prüfung: 10.03.2017

https://doi.org/10.51202/9783186951038-I Generiert durch IP '3.145.111.183', am 27.04.2024, 19:01:36. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

Fortschritt-Berichte VDI

Reihe 3

Verfahrenstechnik

Dipl.-Ing. Sebastian Recker, Düsseldorf

Systematic and Optimization-Based Synthesis and Design of Chemical Processes

Berichte aus der Aachener Verfahrenstechnik - Prozesstechnik

RWTH Aachen University

Recker, Sebastian Systematic and Optimization-Based Synthesis and Design of Chemical Processes

Fortschr.-Ber. VDI Reihe 3 Nr. 951. Düsseldorf: VDI Verlag 2017. 124 Seiten, 31 Bilder, 26 Tabellen. ISBN 978-3-18-395103-1, ISSN 0178-9503, € 48,00/VDI-Mitgliederpreis € 43,20.

Für die Dokumentation: Conceptual Process Design – Process Optimization – Shortcut Model for Kinetically-Controlled Reactor Networks – Rigorous Optimization – MINLP

In industrial practice, conceptual process design is typically conducted by repetitive simulation studies, which require detailed design specifications in an early design phase. Guided by heuristics, these iterative solution procedures result in high manual effort and, in addition, no guarantee concerning the quality of the solution can be given. Optimization-based design methods provide a tremendous potential to accelerate and improve conceptual process design. For this purpose, a synthesis framework for the optimization-based design of chemical processes is presented in this thesis. Powerful shortcut and rigorous evaluation methods for reaction and distillation are presented. These methods are computationally efficient in order to allow an optimization-based design of large-scale chemical processes. Various industrial case studies illustrate the application of the novel approaches and highlight their benefits.

Bibliographische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet unter <u>http://dnb.ddb.de</u> abrufbar.

Bibliographic information published by the Deutsche Bibliothek

(German National Library) The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie (German National Bibliography); detailed bibliographic data is available via Internet at http://dnb.ddb.de.

D82 (Diss. RWTH Aachen University, 2017)

© VDI Verlag GmbH · Düsseldorf 2017

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe (Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung, vorbehalten.

Als Manuskript gedruckt. Printed in Germany. ISSN 0178-9503 ISBN 978-3-18-395103-1

> https://doi.org/10.51202/9783186951038-I Generiert durch IP '3.145.111.183', am 27.04.2024, 19:01:36. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig.

Vorwort

Die vorliegende Arbeit entstand während meiner Zeit als wissenschaftlicher Mitarbeiter der Aachener Verfahrenstechnik - Prozesstechnik und Systemverfahrenstechnik der RWTH Aachen. Mein besonderer Dank gilt meinem Doktorvater, Herrn Professor Dr.-Ing. Wolfgang Marquardt, für die Förderung und Unterstützung während dieser Zeit. Ohne seine Begeisterungsfähigkeit und Offenheit wäre diese Arbeit nicht möglich gewesen. Weiterhin danke ich Herrn Professor Dr.-Ing. Hannsjörg Freund für die Übernahme des Koreferats. Zudem danke ich Herrn Professor Dr. rer. nat. Werner Schomburg für die Übernahme des Prüfungsvorsitzes. Herrn Prof. Alexander Mitsos, Ph.D. danke ich für seine Teilnahme als Prüfungsbeisitzer und besonders für seine Unterstützung während meiner Zeit als Mitarbeiter der Aachener Verfahrenstechnik - Systemverfahrenstechnik.

Bei allen Mitarbeitern des Lehrstuhls bedanke ich mich für die freundschaftliche und kollegiale Atmosphäre, in der ich sowohl das Forschen als auch andere gemeinsame Aktivitäten sehr genossen habe. Insbesondere innerhalb der Synthesegruppe war der fachliche Austausch mit Andreas Harwardt, Christian Redepenning und Kirsten und Mirko Skiborowski stets produktiv und hatte einen großen Anteil am Gelingen dieser Arbeit. Vielen Dank für die wunderbare Zeit nicht nur auf der Arbeit, sondern auch abseits des Insitutes. Manuel Dahmen, Christian Redepenning und Kirsten und Mirko Skiborowski danke ich darüber hinaus für das Korrekturlesen dieser Arbeit.

Weiterhin hat die interdisziplinäre Zusammenarbeit im EU-Projekt SYNFLOW mir immer wieder geholfen, über den berühmten Tellerrand hinaus zu schauen und die eigene Forschung zu hinterfragen. Besonderer Dank gilt hierbei den Kollegen Herrn Dr. Charles Gordon, Herrn Dr. Marco Haumann, Frau Dr. Lisa Völk und Frau Olga Walz für ihre Unterstützung.

Ich möchte mich auch bei allen Studenten bedanken die mich während dieser Zeit durch HiWi-Tätigkeiten und studentischen Abschlussarbeiten in meiner Arbeit am Lehrstuhl unterstützt haben. Insbesondere Jannik Burre, Flemming Holtorf und Vinzent Strobel möchte ich an dieser Stelle für ihren Einsatz danken.

Mein größter Dank gilt meinen Eltern, meiner Frau Eva und unserer Tochter Annabelle für ihr Unterstützung und Liebe.

Düsseldorf, im März 2017

Sebastian Recker

https://doi.org/10.51202/9783186951038-I Generiert durch IP '3.145.111.183', am 27.04.2024, 19:01:36. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

Contents

Nomenclature				
K	urzfa	ssung		XIII
1	Introduction			1
	1.1	Conce	eptual design of chemical processes	1
		1.1.1	Design methods for reactor networks	2
		1.1.2	Design methods for distillation-based separation systems	4
		1.1.3	Design methods for reaction-separation processes	5
	1.2	Aim a	and structure of this thesis	9
	1.3	Previe	bus publication of results	10
2	Αu	nifying	; framework for conceptual process design	11
	2.1	Varia	nt generation	12
	2.2	Optin	nization with shortcut models	12
		2.2.1	Reactor shortcut	13
		2.2.2	Separation shortcut	15
		2.2.3	Solution procedure	17
	2.3	Optin	nization with rigorous models	18
		2.3.1	Multi-tube differential sidestream reactor	18
		2.3.2	Continuous stirred-tank reactor	22
		2.3.3	Simple distillation column	23
		2.3.4	Reactive distillation column	28
		2.3.5	Extractive distillation column	29
		2.3.6	Vapor recompression column	31
		2.3.7	Solution procedure	32
	2.4	Illustr	ative example: ETBE synthesis	34
		2.4.1	Variant generation	34
		2.4.2	Optimization with shortcut models	36
		2.4.3	Revision of the process variants	39
		2.4.4	Optimization of a process superstructure with shortcut models	41

		2.4.5	Optimization with rigorous models	43
	2.5	Illustra	ative example: Allyl chloride production	46
		2.5.1	Variant generation	46
		2.5.2	Optimization with shortcut models	48
		2.5.3	Revision of the process variant	49
		2.5.4	Optimization with rigorous models	50
	2.6	Conclu	isions	53
3	Syst	ematic	variant generation for catalytic processes	55
	3.1	Batch	vs. continuous	56
	3.2	Input/	output structure	57
	3.3	Recycl	e structure	57
	3.4	Model	-based kinetic investigation	59
	3.5	Separa	tion system	61
	3.6	Conclu	isions	62
4 Systematic design of a butadiene telo				
4	Syst	ematic	design of a butadiene telomerization process	63
4	Syst 4.1	ematic Varian	t generation	63 64
4	Syst 4.1	ematic Varian 4.1.1	t design of a butadiene telomerization process t generation Batch vs. continuous	63 64 65
4	Syst 4.1	Eematic Varian 4.1.1 4.1.2	a design of a butadiene telomerization process t generation Batch vs. continuous Input/output structure	63 64 65 65
4	Syst 4.1	Cematic Varian 4.1.1 4.1.2 4.1.3	a design of a butadiene telomerization process t generation Batch vs. continuous Input/output structure Recycle structure	63 64 65 65 66
4	Syst 4.1	Varian 4.1.1 4.1.2 4.1.3 4.1.4	a design of a butadiene telomerization process t generation Batch vs. continuous Input/output structure Recycle structure Model-based kinetic investigation	 63 64 65 65 66 69
4	Syst 4.1	Varian 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5	a design of a butadiene telomerization process t generation Batch vs. continuous Input/output structure Recycle structure Model-based kinetic investigation Separation system	 63 64 65 65 66 69 85
4	Syst 4.1 4.2	Varian 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Optim	a design of a butadiene telomerization process t generation Batch vs. continuous Input/output structure Recycle structure Model-based kinetic investigation Separation system ization with shortcut models	 63 64 65 65 66 69 85 87
4	Syst 4.1 4.2 4.3	Varian 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Optim Optim	a design of a butadiene telomerization process t generation	 63 64 65 65 66 69 85 87 91
4	Syst 4.1 4.2 4.3 4.4	Cematic Varian 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Optim Optim Pilot p	a design of a butadiene telomerization process t generation Batch vs. continuous Input/output structure Recycle structure Model-based kinetic investigation Separation system ization with shortcut models ization with rigorous models blant experiments	 63 64 65 65 66 69 85 87 91 92
4	Syst 4.1 4.2 4.3 4.4 4.5	ematic Varian 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Optim Optim Pilot p Conclu	a design of a butadiene telomerization process t generation Batch vs. continuous Input/output structure Recycle structure Model-based kinetic investigation Separation system ization with shortcut models biant experiments	 63 64 65 66 69 85 87 91 92 93
4	4.1 4.2 4.3 4.4 4.5 Con	ematic Varian 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Optim Pilot p Conclu clusion	a design of a butadiene telomerization process t generation Batch vs. continuous Input/output structure Input/output structure Model-based kinetic investigation Separation system ization with shortcut models blant experiments s and final thoughts	 63 64 65 66 69 85 87 91 92 93 95
4	Syst 4.1 4.2 4.3 4.4 4.5 Con 5.1	ematic Varian 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Optim Pilot p Conclu Conclu	a design of a butadiene telomerization process t generation Batch vs. continuous Input/output structure Recycle structure Model-based kinetic investigation Separation system ization with shortcut models blant experiments stand final thoughts	 63 64 65 65 66 69 85 87 91 92 93 95 96

Nomenclature

Abbreviations

- 1-MODE 1-methoxy-2,7-octadiene
- $3\text{-MODE} \hspace{0.1in} 3\text{-methoxy-1,7-octadiene}$
- AIC Akaike's information criterion
- AR attainable region
- $\operatorname{CSTR}\,$ continuous stirred-tank reactor
- DSR differential sidestream reactor
- ETBE ethyl tert-buthyl ether
- EtOH ethanol
- FAM feed angle method
- G Gibbs free energy
- H enthalpy
- IB isobutene
- $IMes \quad 1, 3\mbox{-dimesityl-imidazol-2-ylidene}$
- IMI incremental model identification
- LCA life cycle analysis
- LP linear program
- MeOH methanol
- MESH mass, equilibrium, summation and enthalpy
- MINLP mixed-integer nonlinear programming

nBa	n-butane		
NCC	nonlinear complementarity constraints		
NLP	nonlinear programming		
NMP	N-methylpyrrolidone		
OED	optimal experiment design		
Pd	palladium		
PFR	plug flow reactor		
PNFA	process network flux analysis		
PNFA	reaction network flux analysis		
RBM	rectification body method		
ROM	reduced-order model		
TAC	total annualized cost		
TON	turnover number		
TPP	triphenylphosphine		
TS	threefold sulfonated derivative		
VLE	vapor liquid equilibrium		
VRC	vapor recompression column		
Indices			
act	active		
adJolly adjusted jolly mechanism			
В	boil-up		
с	component		
cap	capital		

- Cat catalyst
- ci column intervals

$_{\rm cl}$	clearance
comp	compressor
cs	column shell
D	distillate
dipa	dipalladium-bisally mechanism
Е	entrainer
emp	empirical
f	feed
fp	feed pinch
hx	heat exchanger
i	reaction device
in	inlet
Jolly	jolly mechnanism
k	reaction
KW	cooling water
L	liquid
n	tray
op	operating
out	outlet
pre	precursor
$\mathbf{p}\mathbf{v}$	pressure vessel
R	reactor
Raw	raw material
Reac	reaction
Sep	separation

sp saddle pinch

V vapor

Symbols

α	angle	[-]
α	heat transfer coefficient	$[W/(m^2K)]$
ΔH_R	enthalpy of reaction	[J/mol]
η_{comp}	isentropic compression efficiency	[-]
κ	isentropic exponent	[-]
μ	relaxation parameter	[-]
ν	stoichiometric coefficient	[—]
Φ	economic potential	[\$]
n	normal vector	[—]
W	weighting matrix	[—]
A	exchange area	$[m^2]$
В	boil-up molar flow	[mol/s]
b	binary decision variable	[mol/s]
C	cost	[\$]
с	continuous decision variable	[-]
c_p	specific heat capacity	[J/K]
D	diameter	[m)]
D	distillate molar flow	[mol/s]
E	entrainer flow rate	[mol/s]
E_a	activation energy	[kJ/mol]
F	F-factor	$[Pa^{0}.5]$
F	feed flow rate	[mol/s]

f_c	capital charge factor	[—]
Η	height	[m]
Η	hold up	$[m^3]$
h	specific enthalpy	[J/mol]
k	heat transfer coefficient	$[kW/(m^2K)]$
k	reaction rate constant	$[mol/(m^3s)]$
k_0	pre-exponential factor	$[mol/(m^3s)]$
L	liquid molar flow	[mol/s]
M_v	molar volume	$[m^3/kmol]$
MF	module factor	[-]
MPF	' material pressure factor	[-]
N	molar flow	[mol/s]
n	column tray	[-]
n	reactor element	[-]
n_c	number of components	[—]
n_i	number of reaction devices	[-]
n_t	number of reactor tubes	[-]
N_{col}	number of column trays in final design	[-]
N_T	number of column trays	[-]
p	pressure	[bar]
P_{comp}	compressor power duty	[kW]
Q	heat stream	[kW]
Q_B	reboiler heat duty	[kW]
Q_D	condenser heat duty	[kW]
R	rate of formation	$[mol/(l \ s)]$

R	reflux molar flow	[mol/s]
R_g	ideal gas constant	[J/(molK)]
Т	temperature	[K]
V	vapor molar flow	[mol/s]
V	volume	$[m^3]$
v	velocity	[m/s]
x	liquid mole fraction	[-]
y	vapor mole fraction	[-]
z	mole fraction	[-]

Abstract

In industrial practice, conceptual process design is typically conducted by repetitive simulation studies, which require detailed design specifications in an early design phase. Guided by heuristics, these iterative solution procedures result in high manual effort and, in addition, no guarantee concerning the quality of the solution can be given. Optimization-based design methods provide a tremendous potential to accelerate and improve conceptual process design.

Various authors have therefore suggested the use of surrogate models, which do not require detailed specifications. Others have developed methods for the optimization-based process design by means of superstructure optimization. Marquardt, Kossack and Kraemer (2008) proposed a framework for an optimization-based design of hybrid separation processes, which combines shortcut and rigorous evaluation steps. This framework has been successfully demonstrated for conceptual design of various processes (see, e.g., Krämer, Harwardt, Bronneberg and Marquardt, 2011).

In this thesis, the process design framework of Marquardt et al. (2008) is extended towards the optimization-based design of reaction-separation processes. For this purpose, powerful shortcut and rigorous evaluation methods for reactor networks and reactionseparation processes are proposed. It is important to emphasize that all of these methods are developed to be computationally efficient in order to allow an optimization-based design and analysis of large-scale processes. As a consequence, cost-optimal process solutions can be obtained with considerably less effort compared to the use of tedious repetitive simulation studies. It also has to be stressed that the performance of all methods is validated by large-scale industrial case studies. Thus, it is shown that the process design framework can contribute decisively towards the sustainable solution of today's challenging design problems in chemical engineering.

Kurzfassung

Die Verknappung fossiler Rohstoffe, steigender Wettbewerbsdruck und die Forderung nach nachhaltiger Produktion treiben die Suche nach effizienteren Produktionsprozessen an. Diese Prozesse werden in einem kreativen Entwurfsprozess entwickelt, wobei heutzutage neue Prozessvarianten häufig anhand von Erfahrungswissen und Heuristiken generiert und anschließend mit Hilfe von Synthesewerkzeugen evaluiert werden. Alternativ bieten optimierungsbasierte Entwurfsmethoden das Potential die Entwicklung neuer, innovativer Prozesse zu unterstützen.

Bei der Optimierung von Reaktions- und Trennprozessen mit rigorosen Modellen entstehen sehr große Gleichungssysteme, die auf Grund ihrer starken Nichtlinearität nur schwer zu lösen sind. Um die Komplexität der Modelle zu reduzieren, können in einem ersten Schritt Näherungsverfahren verwendet werden. Hierdurch kann zunächst die strukturelle Vielfalt der Prozessvarianten reduziert werden. Diese Herangehensweise bietet den Vorteil einer sehr kompakten Formulierung der Optimierungsprobleme. Bei der Optimierung von Reaktions- und Trennverfahren mit Näherungsverfahren werden üblicherweise Gleichgewichtsreaktoren modelliert und das dafür nötige Reaktionsgleichgewicht mit Hilfe thermodynamischer Gleichungen bestimmt. Der optimale Betriebspunkt kann jedoch von diesem Reaktionsgleichgewicht abweichen. Daher wird in dieser Arbeit ein kinetik-basiertes Näherungsverfahren für Reaktornetzwerke vorgestellt, welches das, durch eine Verschaltung beliebiger Reaktortypen, erreichbare Gebiet abbilden kann. Darauf aufbauend wird eine systematische Initialisierung der rigorosen Modelle vorgestellt, mit deren Hilfe die Robustheit und Effizienz der rigorosen Optimierung verbessert werden kann.

Um den Entwurf von katalytischen Prozessen zu unterstützen wird anschließend eine Heuristik für die Generierung von katalytischen Prozessvarianten entwickelt. Diese Heuristik integriert nicht nur die Entscheidungen, die an die Auswahl des Katalysators gekoppelt sind, in den Entwurfsprozess. Sie adressiert auch die für den Entwurfsprozess notwendigen Laborexperimente und dient somit als Forschungswerkzeug zur Planung und Auswertung von Laborversuchen.

Zuletzt werden die Schlussfolgerungen über die Bedeutung und Anwendbarkeit von Näherungsverfahren und rigorosen Optimierungsmethoden für den Entwurf von Reaktionsund Trennprozessen zusammengefasst und offene Fragestellungen abgeleitet.