Nº. 9

Berichte des Instituts für Massivbau

Mahdi Hayatrouhi

Strengthening of reinforced concrete beam-column joints to increase seismic resistance

https://doi.org/10.51202/9783816791782-i Generiert durch IP '18.219.73.110', am 12.05.2024, 01:00:42. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

Berichte

des Instituts für Massivbau der Leibniz Universität Hannover Herausgeber: Univ.-Prof. Dr.-Ing. Steffen Marx Leibniz Universität Hannover – Institut für Massivbau Heft 9, Februar 2014

Fraunhofer IRB Verlag

https://doi.org/10.51202/9783816791782-i Generiert durch IP '18.219.73.110', am 12.05.2024, 01:00:42. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

Herausgeber

Univ.-Prof. Dr.-Ing. Steffen Marx Leibniz Universität Hannover Institut für Massivbau Appelstraße 9 A 30167 Hannover

Alle Rechte vorbehalten

Dieses Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung in anderen als den gesetzlich zugelassenen Fällen bedarf deshalb der vorherigen schriftlichen Einwilligung des Herausgebers.

© 2014 by Univ.-Prof. Steffen Marx Leibniz Universität Hannover Institut für Massivbau ISBN (Print): 978-3-8167-9177-5 ISBN (E-Book): 978-3-8167-9178-2

Fraunhofer IRB Verlag

Fraunhofer-Informationszentrum Raum und Bau IRB Postfach 80 04 60, 70504 Stuttgart Telefon 0711 970-2500 Telefax 0711 970-2508 E-Mail irb@irb.fraunhofer.de URL http://www.baufachinformation.de

> https://doi.org/10.51202/9783816791782-i Generiert durch IP '18.219.73.110', am 12.05.2024, 01:00:42. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig

Abstract

Current research attempted to explore the behaviour of critical regions of reinforced concrete frame structures under seismic loading to investigate the deficiencies and evaluate the performance of gravity load designed (GLD) reinforced concrete (RC) beam-column joints. The categorized literature review of retrofitting and strengthening methods of RC beam-column joints clarified that non-disruptiveness; practical implementation, ductility and perseverance of lateral resistance as well as economical issues still remain the most challenging aspects of seismically retrofitting the vulnerable existing RC beam-column joints.

The seismic design principals of RC frame structures were observed in seismic retrofitting of the vulnerable frames as a strategy of retrofitting based on the capacity design concept. Accordingly, the beam sidesway mechanism was redefined for seismic retrofitting by relocating the beam plastic hinges far enough away from the joints. Afterwards, with introducing innovative energy dissipation devices such as Multi Functional Corbels (HMFC) and Harmonica Damper Plates (HHDP), the innovative Retrofitting Techniques 1 and 2 (RT1 and RT2) were proposed. The introduced devices of HMFC and HHDP as a passive energy dissipation system absorb energy through inelastic deformations. For efficiently and extensively evaluating and arranging the anticipated hierarchy of strength in beam-column joints before and after retrofitting, the Strength and Failure Sequence Diagram (SFSD) was proposed in a new coordinate. To implement the proposed RT1 and RT2 and achieve the desired hierarchy of strength, the design procedures were presented. Subsequently, to clarify the behaviour and founding the proposed innovative devices and techniques a comprehensive numerical analysis was carried out by nonlinear finite element analysis software ATENA.

The proposed RT1 and RT2 were experimentally evaluated through a series of five 3/4-scale beam-column joint specimens including two units for reference and the three others for retrofitting. A particular loading setup was designed and fabricated in structural laboratory so that the applying of horizontal cyclic and vertical static loads became simultaneously possible. An extremely severe loading history including three cycles (push and pull) at every particular drift level as a displacement-controlled series of progressively increasing displacement amplitudes in accordance with [ACI 374.1-05] was imposed to every specimen. The excellent performance of retrofitted specimens through the experimental study confirmed that the proposed RT1 and RT2 are able to retain structural integrity with the minimum strength and

stiffness degradation. As intended, the energy dissipation capacity was dramatically increased and beam sidesway mechanism was actually formed.

Finally, non-linear finite element analysis using ATENA was carried out on all reference and retrofitted specimens. The FEM models were validated with experimental outcomes. Subsequently, the validated models were utilized to develop a new simplified method for upgrading based on the advantages of RT1 and RT2. In the new proposed innovative Retrofitting Technique 3 (RT3), HHDP was replaced by Frictional-Bending Damper Plate (HFBDP) which dissipates energy based on friction and bending. The effectiveness and reliability of the proposed RT3 was investigated through a numerical analysis. The results of simulation showed that RT3 could efficiently achieve the intention of seismic retrofitting too.

At the end, as confirmed through experimental and numerical investigation, it is claimed that the all acceptance criteria of ACI Committee 374 [ACI 374.1-05] were effectively satisfied by the proposed retrofitting techniques.

Keywords: beam-column joint; retrofitting; seismic; analysis; design; energy dissipation; plastic hinge; inelastic deformation; corbel; friction

Kurzzusammenfassung

Die Arbeit enthält eine kategorisierte Übersicht von Nachrüst- und Verstärkungsmethoden bewehrter Balken-Stützen-Verbindungen aus der Literatur. Es zeigt sich, dass sowohl baulicher Eingriff, praktische Ausführung, Duktilität und Dauerhaftigkeit bezüglich seitlichen Widerstands, als auch ökonomische Randbedingungen die herausforderndsten Aspekte seismischer Verstärkungen gefährdeter Balken-Stützen-Verbindungen aus Stahlbeton sind.

Die seismischen Konstruktionsprinzipien von Stahlbetonrahmenkonstruktionen wurden entsprechend der Strategie für Nachrüstungen nach dem "capacity design concept" untersucht. Dabei wurde der "beam sidesway mechanism" für seismische Verstärkungen durch eine Verlagerung des plastischen Gelenks in geeigneter Entfernung zur Rahmenecke neu definiert. Danach werden durch Einführung innovativer Energiedissipationsgeräte, wie Multifunktionskonsole (HMFC) und Harmonika-Dämpfer-Platte (HHDP), innovative Verstärkungstechniken 1 und 2 (RT1 und RT2) vorgeschlagen. Die innovativen Geräte HMFC und HHDP als passives Energiedissipationssystem absorbieren Energie durch unelastische Verformung. Zur effizienten und ausgedehnten Bewertung und Anordnung erwarteter Widerstandshierarchie in Balken-Stützen-Verbindungen vor und nach der Verstärkung, wurde das Widerstands-Versagensfolge-Diagramm (SFSD) mit veränderter Ordinate vorgeschlagen. Zur Anwendung der eingeführten RT1 und RT2 und zum Erreichen der gewünschten Widerstandshierarchie wurde ein kompletter Entwurfsprozess präsentiert. Um das Verhalten und die Leistungsfähigkeit des vorgeschlagenen innovativen Geräts und Techniken zu untermauern, wurden umfassende numerische Analysen mit der nichtlinearen FE-Software ATENA durchgeführt.

Die vorgeschlagenen Verstärkungstechniken wurden experimentell mittels einer Serie von 5 Balken-Stützen-Verbindungen im ³/₄-Maßstab evaluiert, wobei zwei Einheiten als Referenz ohne Verstärkung und drei mit Verstärkung getestet wurden. Es wurde eine spezielle Belastungseinrichtung im Labor konstruiert und hergestellt, so dass die Prüfstücke auf dem Boden stehen und seitliche zyklische Last, mit der Maßgabe einer vertikalen statischen Last, an den Proben angreifen. An allen Proben wurde eine extrem harte Belastungsgeschichte weggesteuert eingetragen, die in Übereinstimmung mit [ACI 374.1-05] aus progressiv ansteigenden Verschiebungsamplituden besteht, wobei drei Zyklen (Druck und Zug) auf einem bestimmten Driftniveau liegen. Durch die experimentellen Untersuchungen bestätigt sich die exzellente Leistungsfähigkeit der verstärkten Probestücke sowie die Annahme, dass RT1 und RT2 in der Lage sind das Widerstandsvermögen mit einem Minimum an Festigkeitsund Steifigkeitsverlusten beizubehalten. Wie erwartet stieg die Kapazität zur Energiedissipation drastisch an und der "beam sidesway mechanism" bildete sich tatsächlich aus.

Letztlich wurde die nichtlineare FE-Analyse durch Benutzung von ATENA alle verstärkten und nicht verstärkten Proben angewendet. Das FE-Modell wurde durch die experimentellen Ergebnisse validiert. Anschließend wurden die validierten Modelle benutzt, um eine neue vereinfachte Methode zur Verbesserung zu entwickeln, die auf den Vorzügen von RT1 und RT2 basieren. In der neu vorgeschlagenen innovativen Verstärkungstechnik 3 (RT3) wurde das HHDP durch eine Biegereibungsdämpferplatte (HFBDP) ersetzt, welche Energie basierend auf Reibung und Biegung dissipiert. Die Effektivität und Funktionsfähigkeit der vorgeschlagenen RT3 wurde mit Hilfe numerischer Analysen untersucht. Die Ergebnisse der Simulation zeigten, dass RT3 die Intention seismischer Verstärkung ebenfalls effizient erzielen könnte.

Letztlich, wie durch experimentelle und numerische Untersuchungen bestätigt, wird behauptet, dass alle geforderten Kriterien des ACI-Komitees [ACI 374.1-05] durch die vorgeschlagenen Verstärkungstechniken befriedigt wurden.

Schlagworte: Balken-Stützen-Verbindungen; Nachrüstung; Seismisch; Analyse; Konstruktion; Energiedissipation; Plastisches Gelenke; unelastische Verformung; Konsole; Reibung

Acknowledgments

First, and foremost, praises and thanks to the God, the Almighty, for providing me the blessings to complete this research successfully.

I wish to express my deep and sincere gratitude and appreciation to my research supervisors Prof. Dr.-Ing. Steffen Marx, Prof. Dr.-Ing. Nabil A. Fouad, and Prof. Dr.-Ing. Jürgen Grünberg for giving me the opportunity to develop this research and for providing me the guidance, encouragement and supporting throughout the course of this study that made this project possible.

I would like to appreciate Dr.-Ing. Michael Hansen for his supports during experimental study.

I would like to thank the all colleagues of Institute of Concrete Construction (IFMA), Leibniz University of Hannover, particularly Mrs. Kerstin Bensch, Mrs. Simone Matern and my dear friend Dipl.-Ing. Jens Piehler for their kindly assistance.

All experiments were conducted at structural laboratory of Institute of Concrete Construction (IFMA), Leibniz University of Hannover. I would like to show gratitude to technical staffs of the laboratory Mr. Ernst Heine and Mr. Olaf Menze for their distinguished assistance during the experimental study. I wish also to show appreciation to the other institutes' staff in the structural laboratory, Mr. Lothar Beer, Mr. Karl-Heinz Hentschel, Dipl. Ing. Christian Fricke, Mr. Viktor Wall, and Mr. Gerd Hargesheimer for their advices and assistance.

Materials (FRP composites, adhesives and SAS670 bolts) donated by FIDIA, Hardwire, Sika and Stahlwerk Annahute are thankfully acknowledged.

Last but not least, I wish to express my deep thankfulness to my family for their patience to wait in loneliness for the right time. Thanks to my lovely sons Amirhossein and Amirreza for their accompanying. My sincere gratitude to my wife Sonia for her supports, encourages and patience during this study so that without her this work could not have been possible.

Table of contents

Abstract	i
Kurzzusammenfassung	iii
Acknowledgments	v
Table of contents	vi
List of figures	x
List of tables	xx
Notation	xxi
Chapter 1	1
Introduction	
1.1 Introduction	1
1.2 Motivation of the research	4
1.3 Objectives	4
1.4 Organization of the research	5
Chapter 2	7
Background and State of the Art	7
2.1 Introduction	7
2.2 Seismic behaviour of substandard RC beam-column Joints	
2.2.1 Summary of results	14
2.3 Retrofitting and strengthening techniques of beam-column joints	17
2.3.1 Epoxy repair procedures	17
2.3.2 Jacketing and other mechanical retrofitting techniques	22
2.3.3 Utilization of fiber-reinforced polymer composites, FRP	34
2.3.4 The summary of the results and discussion	51
2.4 Design approaches by codes of practice	54
2.4.1 The bond and shear requirements within the beam-column joints	54
2.4.2 Summary and conclusions of the codes comparison	57
Chapter 3	59
Seismic Retrofitting by Developing the Beam Sidesway Mechanism	59
3.1 Introduction	59
3.2 Seismic design principals of structures and joints	60
3.3 Performance-based retrofitting through developing the beam plastic	63
hinges	63
3.3.1 Strategy of seismic retrofitting through the capacity design concept	63
3.3.2 Forces acting on an exterior beam-column joint	63
3.3.3 Strength and Failure Sequence Diagram (SFSD)	67
3.4 Innovative Multi Functional Corbels (HMFC)	70

General description	70
Hysteretic behaviour	72
ovative Harmonica Damper Plates (HHDP)	77
General description	77
Hysteretic behaviour	78
Innovative strengthening and retrofitting technique through	82
nctional Corbels (HMFC), Retrofitting Technique 1 (RT1)	82
Approach and modified SFSD	82
Upgrading the resistance to bond-slip of the beam bottom bars	86
Procedure for designing and developing	87
Innovative strengthening and retrofitting technique through	89
nd Harmonica Damper Plates (HHDP),	89
ing Technique 2 (RT2)	89
Approach and modified SFSD	89
Upgrading the resistance to bond-slip of the beam bottom bars	94
Procedure for designing and developing	94
	97
ntal Program and Development	97
oduction	97
t specimens, energy dissipation devices and retrofitting	98
RC beam-column joint specimens	98
Multi Functional Corbels, HMFC	109
Harmonica Damper Plates, HHDP	116
Retrofitted specimens	120
ding setup	141
General specifications	141
Details and fabrication of the loading setup	143
Testing procedure and loading history	143
rumentation	144
perimental tests and results	150
Tests of reference units	151
Tests of retrofitted units	169
t results and summary of findings	204
Strength	204
Energy dissipation	212
Damage mechanisms	216
Hierarchy of strength	217
Joint behaviour	218
	General description

4.6.6	Decomposition of lateral displacement	
Chapter 5		
Numerical	I Analysis and Simulations	
5.1 Intr	roduction	
5.2 Imp	plemented constitutive models in ATENA	
5.2.1	Constitutive modelling of concrete	
5.2.2	Constitutive modelling for reinforcement	
5.2.3	Constitutive modelling for reinforcement bond	
5.2.3	Constitutive modelling for Von Mises plasticity	
5.2.4	Constitutive modelling for interface	
5.3 Ele	ment types	
5.4 Sol	utions of nonlinear equations	
5.5 Nu	merical models for reference units	
5.6 Ser	nsitivity study	
5.6.1	Sensitivity of element size	
5.6.2	Sensitivity of fracture energy	
5.6.3	Sensitivity of cyclic reinforcement	
5.6.4	Sensitivity of tension stiffening	
5.6.5	Sensitivity of cracking model	
5.7 Nu	merical models for retrofitted specimens	
5.8 Co	mparison the results of FE analysis and experimental test	
5.8.1	Reference unit BD-B	
5.8.2	Reference unit SD-B	
5.8.3	Retrofitted specimen BD-H1	
5.8.4	Retrofitted specimen SD-H2-D	
5.8.5	Retrofitted specimen BD-H3-D	
5.9 De	veloping a new upgrading method, Retrofitting Technique 3 (RT3)	
Chapter 6		
Conclusio	ns and Recommendations	
6.1 Co	nclusions	
6.1.1	Conclusions of experimental study	
6.1.2	Conclusions of numerical study	
6.1.3	General conclusion	
6.2 Rec	commendations for further research	
Reference	s	
Appe	ndix A: Supplementary Reviews of Laboratory Activities	
Appe	ndix B: Scheme and Details of Loading Setup	
Арре	ndix C: Installation of Specimens into the Loading Setup	

Appendix D:	Decomposition of Specimen Deformation	308
Appendix E:	Concept of Relative Energy Dissipation Ratio	313

TX https://doi.org/10.51202/9783816791782-i Generiert durch IP '18.219.73.110', am 12.05.2024, 01:00:42. Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig.

List of figures

Fig.	1.1: Global seismic hazard map produced by the Global Seismic Hazard Assessment Program(GSHAP 1999)	1
Fig.	1.2: Preliminary determination of Earthquake epicenters, 1963-1998(NASA, DTAM	
8.	project team)	1
Fig.	1.3: Population density (people per km2) map of the world in 1994 (Wikipedia)	2
Fig.	1.4: Probabilistic Seicmic hazard map for Germany, Austria, and Switzerland with map of epicenters. (Grüntal u.a. 1998)	2 2
Fig.	1.5: Collapsed RC frame structure due to failure of beam-column joints, 1999, 7.2	
	Richter earthquake, Duzce, Turkey	3
Fig.	1.6: RC frame structure was collapsed via failure of beam-column joints, 1999,	7.4
	Richter earthquake, Kocaeli, Turkey	3
Fig.	1.7: Joins failure leaded to completely collapse of RC frame structure: a): 1994,	
	Northridge earthquake, USA, 6.7 Richter (reprinted from [Moehle]); b) 20.04.2013,	
	China's Sichuan province, 6.9 Richter, (Trend News)	3
Fig.	2.1: Vacuum impregnation procedure [French et al90]	18
Fig.	2.2: Masonry block jacketing technique [Bracci et al95-2]	22
Fig.	2.3: Partial masonry infill technique [Bracci et al95-2]	23
Fig.	2.4: Prestressed concrete jacketing technique [Bracci et al95-2]	24
Fig.	2.4: Concrete jacketing technique [Alcocer -93] (reprinted from [Engindeniz et al05])	26
Fig.	2.5: a) Concrete jacketing using UNIDO strengthening technique; b) welding of new reinforcement to existing column reinforcement; c) details of steel collar stirrup.	20
Fig	[1 SOIIOS-99]	30
Fig.	2.4. Steel jacketing technique [Coldzao -69] (reprinted from [Engindeniz et al. 05])	31
Fig.	2.5. Steel jacketing technique [Biddah et al. 07]	37
Fig.	2.0. Confugated Steel Jacketing technique [Biddan et al97]	52
r ig.	[Chaimahawan 00]	3/
Fig	2.8: CERP ductility and development retrofitting of hear column join [Gen et al. 08]	36
Fig.	2.6. CFRF ductinity and development reporting of ocali-column join [Gen et al20].	. 50 c
r ig.	[Antononoulos 03]	3 28
Fig	2.10: a) CERP or CERP strengthening; b) Strengthening of rengined specimens	50
r ig.	[Mukheriee-05]	41
Fig	2 11: Rehabilitation schemes [Ghobarah-05]	42
Fig.	2.12: Schematic representation of FRP repaired joint [Almusallam et al -09]	43
Fig.	2 13:a) FRP annlication details of specimens [Ilki et al -11]	44
Fig.	2.13.4) Free uppreation details of specificities [like et al. 11]	46
Fig.	2.15: Typical reliabilitation schemes: a) TR1: b) TR2 [El-Amoury-02]	47
Fig.	2 16: Typical rehabilitation schemes: a) T1R: b) T2R: c) T9 [Ghobarah-02]	49
(ren	rinted from[Said-04])	49
Fio	2.17: GFRP retrofit configuration for the 3D corner joint specimen [Pampanin et al -07	יי
- 15.		ן 50
Fig.	3.1: Global failure mechanisms of frame structures during a major earthquake	61

Fig. 3.2: Column sidesway mechanism led to 3 rd floor s	oft story collapse of reinforced
concrete building in Nishinomiya, Kobe earthquak	e, Japan, 1995, Magnitude: 6.69
(Figure from USGS achieves)	
Fig. 3.3: Retrofitting of the vulnerable existing frames b	by developing the beam plastic hinges
Fig. 3.4: Forces acting on an exterior beam-column join	.t
Fig. 3.5: Beam-column joint core stresses and the Mohr	's circle
Fig. 3.6: Evaluation of hierarchy of strengths and seque	nce of events in M-N performance
domain proposed by [Pampanin et al04]	
Fig. 3.7: Proposed Strength and Failure Sequence Diag	cam (SFSD) in a beam-column joint in
Vcol- N performance domain	
Fig. 3.8: A sample of innovative Multi Functional Corb	el (HMFC) with two pipes as energy
dissipation element	
Fig. 3.9: Different forms of Multi Functional Corbel (H	MFC) and their FEM mesh patterns 73
Fig. 3.10: Variations of hysteretic diagrams in six differ	ent variants of Multi Functional
Corbels (HMFC)	
Fig. 3.11: Relative lateral resistance and initial stiffness	of different variants of Multi
Functional Corbels (HMFC)	
Fig. 3.12: Relative absorbed energy by different variant	s of Multi Functional Corbels
(HMFC)	
Fig. 3.13: Comparison of a compression test and numer	ical analysis results on a pipe
specimen of 10 mm length and internal diameter a	nd thickness of 42 and 9.15 mm,
respectively	
Fig. 3.14: A sample of innovative Harmonica Damper F	Plate
Fig. 3.15:Instalation of innovative Harmonica Damper	Plate (HHDP) into a pod77
Fig. 3.16: Three different alternatives of innovative Har	monica Damper Plate
Fig. 3.17: Variations of hysteretic diagram in three diffe	erent variants of innovative Harmonica
Damper Plate (HHDP)	
Fig. 3.17: Displacement-Stain diagrams of three differe	nt variants of innovative Harmonica
Damper Plate (HHDP) for points 1 and 2	
Fig. 3.18: Statically compression test of innovative Har	monica Damper Plate (HHDP) 81
Fig. 3.19: Finite element model of innovative Harmonic	ca Damper Plate (HHDP)
Fig. 3.20: Experimental and numerical results of test an	d analysis of innovative Harmonica
Damper Plate	
Fig. 3.21: Internal forces in strengthened exterior beam	-column joint with Multi Functional
Corbel, Retrofitting Technique 1 (RT1)	
Fig. 3.22: The rehabilitation of development length of b	eam positive bars
Fig. 3.23: Internal forces in strengthened exterior beam-	column joint with Multi Functional
Corbel (HMFC) and Harmonica Damper Plates (H	HDP), Retrofitting Technique 2 (RT2)
Fig. 3.24: Detail of H as referred to in Fig. 3.23 and ass	sumed strain distribution in the
strengthened beam section at the end of HMFC	
Fig. 3.25: The rehabilitation of development length of b	beam positive bars
Fig 4.1: Test of concrete samples, tests of a) cubic comp	pression, b) cylinder compression
c) split, and d) modulus of elasticity	

Fig. 4.2: The overall geometry of specimens	101
Fig. 4.3: Reinforcement details of specimens SD	102
Fig. 4.4: Reinforcement details of specimens BD	102
Fig. 4.5: Preparing of reinforcing bars	104
Fig. 4.6: Attaching strain gauges to reinforcing bars	105
Fig. 4.7: Production of reinforcement cages	106
Fig. 4.8: Production of formwork	106
Fig. 4.9: Wiring the strain gauges and temporary bracing the test specimens	107
Fig. 4.10: Casting of test specimens	108
Fig. 4.11: Curing the test specimens for at least one week	108
Fig. 4.12: Transferring the test specimens to depot and preserving them until the test t	ime. 109
Fig. 4.13: Dimensions and details of Multi Functional Corbel (HMFC) case H1	111
Fig. 4.14: Dimensions and details of Multi Functional Corbel (HMFC) case H2	111
Fig. 4.15: Dimensions and details of Multi Functional Corbel (HMFC) case H3	112
Fig. 4.16: Production process of Multi Functional Corbel (HMFC) case H1	114
Fig. 4.17: Production process of Multi Functional Corbel (HMFC) case H2	114
Fig. 4.18: Produced Multi Functional Corbel (HMFC) case H3	116
Fig. 4.19: Dimensions and details of Harmonica Damper Plate (HHDP) and its pod, D) , 117
(First alternative)	117
Fig. 4.20: Dimensions and details of Harmonica Damper Plate (HHDP) and its pod, E (Second alternative))', 118
Fig. 4.21: Harmonica Damper Plate (HHDP): a) cutting the plate by water jet, b) HHI	OP 119
Fig. 4.22: Harmonica Damper Plate (HHDP) with its pod (case D) a) D set without la	teral
bracing of side pod arms, b) side view of D set, c) view of top side, d) view of b side	oottom
Fig. 4.23: Harmonica Damper Plate (HHDP) with its pod (case D') a) milling a slot ir	to the
connector plates by a universal milling machine . b) milled plates, c) component	ts of D'
set. d) connected D' set to the main test specimen and H3	
Fig. 4.24: Expected Strength and Failure Sequence Diagram (SFSD) for as-built BD s	pecimen 121
Fig. 4.25: Analysis of simplified structural retrofitted model BD-H1 under $Vcol = 76$).78 kN
	122
a) Moment diagram of structural model: b) The results of beam analysis	122
Fig. 4.26: Tension test of 3X2-12-12 Hardwire composite for 10 mm width.	123
Fig 4.27: Expected Strength and Failure Sequence Diagram (SFSD) for retrofitted sr	becimen.
BD-H1	125
Fig. 4.28: Retrofitting of the Bond Deficient specimen (BD) by Multi Functional Corl (HMEC) H1 through PT1 (RD H1)	sel
Fig. 4 29: Details of connector components	120
Fig. 4.30: a) SAS 670/800-Stablwerk Annahütte threaded steel har with anchor puts:	120
b) Prepared angle connector (I 1) with welded anchor nuts	120
Fig. 4 31: Application procedure of SRP 3X2-12-12 Hardwire sheet on the concrete f	or the
shear strengthening of the specimen beam	131
Fig. 4 32: Retrofitted specimen BD-H1 placed in loading setun1H	131
1.5	

 Fig. 4.34: Analysis of simplified structural retrofitted model SD-H2-D under Vcol = 95.74 kN , a) Moment diagram of structural model; b) The results of beam analysis	Fig.	4.33: Expected Strength and Failure Sequence Diagram (SFSD) for as-built SD specim	en 32
Vcol = 95.74 kN , a) Moment diagram of structural model; b) The results of beam analysis 133 Fig. 4.35: Expected Strength and Failure Sequence Diagram (SFSD) for retrofitted specimen, SD-H2-D 135 Fig. 4.36: Retrofitting of the Shear Deficient specimen (SD) by Multi Functional Corbels (HMFC) H2 and Harmonica Damper Plates (HHDP) D through RT2, (SD-H2-D) 136 Fig. 4.37: Retrofitted specimen SD-H2-D 137 Fig. 4.38: Analysis of simplified structural retrofitted model SD-H2-D under Vcol = 95.74 kN , a) Moment diagram of structural model; b) The results of beam analysis 138 Fig. 4.39: Retrofitting of the Bond Deficient specimen (BD) by Multi Functional Corbels (HMFC) H3 and Harmonica Damper Plates (HHDP) D' through RT2, (BD-H3-D) 140 Fig. 4.41: Lostigned loading setup 142 Fig. 4.42: Fabricated loading setup 142 Fig. 4.43: The applied cyclic drift history 143 Fig. 4.44: Location of LVDTs for the retrofitted specimen BD-H1 146 Fig. 4.45: Location of LVDTs for the retrofitted specimen BD-H3-D 147 Fig. 4.48: Location of Strain gauges of reinforcing bars for the reforence specimen 147 Fig. 4.48: Location of Strain gauges of reinforcing bars for the retrofitted specimens 148 Fig. 4.44: Location of LVDTs for the retrofitted specimen BD-H3-D 147 Fig. 4.45: Location of strain gauges of eniforcing bars for the retrofitted spe	Fig.	4.34: Analysis of simplified structural retrofitted model SD-H2-D under	
 Fig. 4.35: Expected Strength and Failure Sequence Diagram (SFSD) for retrofitted specimen, SD-H2-D. SD-H2-D. S135 Fig. 4.36: Retrofitting of the Shear Deficient specimen (SD) by Multi Functional Corbels (HMFC) H2 and Harmonica Damper Plates (HHDP) D through RT2, (SD-H2-D) S136 Fig. 4.37: Retrofitted specimen SD-H2-D. S137 Fig. 4.38: Analysis of simplified structural retrofitted model SD-H2-D under Vcol = 95.74 kN, a) Moment diagram of structural model; b) The results of beam analysis S138 Fig. 4.39: Retrofitting of the Bond Deficient specimen (BD) by Multi Functional Corbels (HMFC) H3 and Harmonica Damper Plates (HHDP) D' through RT2, (BD-H3-D) I40 Fig. 4.40: Retrofitted specimen BD-H3-D. I41 Fig. 4.41: Designed loading setup. I42 Fig. 4.42: Fabricated loading setup. I42 Fig. 4.43: The applied cyclic drift history. I43 Fig. 4.44: Location of load cells and Linear Variable Distance Transducers (LVDTs) for loading setup and as-built specimens (reference units). I45 Fig. 4.44: Location of LVDTs for the retrofitted specimen BD-H1. I46 Fig. 4.45: Location of LVDTs for the retrofitted specimen BD-H3-D. I47 Fig. 4.48: Location of Strain gauges of reinforcing bars for the reference specimen. I47 Fig. 4.49: Location of strain gauges of reinforcing bars for the retrofitted specimens. I48 a) for SD-H2-D, b) for BD-H1 and BD-H3-D. I48 Fig. 4.51: Location of strain gauges of Multi Functional Corbels (HMFC) Harmonica Damper Plates (HHDP), and threaded roads for the retrofitted specimen BD-H2-D. I49 Fig. 4.51: Location of strain gauges of Multi Functional Corbels (HMFC), Harmonica Damper Plates (HHDP), and threaded roads for the retrofitted specimen BD-H3-D. I49 Fig. 4.52: Location of strain gauges of Multi Functiona		Vcol = 95.74 kN, a) Moment diagram of structural model; b) The results of beam analysis	33
 Fig. 4.36: Retrofitting of the Shear Deficient specimen (SD) by Multi Functional Corbels (HMFC) H2 and Harmonica Damper Plates (HHDP) D through RT2, (SD-H2-D)	Fig.	4.35: Expected Strength and Failure Sequence Diagram (SFSD) for retrofitted specime SD-H2-D	en, 35
 (HMFC) H2 and Harmonica Damper Plates (HHDP) D through RT2, (SD-H2-D)	Fig.	4.36: Retrofitting of the Shear Deficient specimen (SD) by Multi Functional Corbels	
Fig. 4.37: Retrofitted specimen SD-H2-D 137 Fig. 4.38: Analysis of simplified structural retrofitted model SD-H2-D under Vcol = 95.74 kN , a) Moment diagram of structural model; b) The results of beam analysis analysis 138 Fig. 4.39: Retrofitting of the Bond Deficient specimen (BD) by Multi Functional Corbels (HMFC) H3 and Harmonica Damper Plates (HHDP) D' through RT2, (BD-H3-D) 140 Fig. 4.40: Retrofittied specimen BD-H3-D 141 Fig. 4.41: Designed loading setup 142 Fig. 4.42: Fabricated loading setup 142 Fig. 4.42: Fabricated loading setup 143 Fig. 4.42: Location of LvDTs for the retrofitted specimen BD-H1 146 Fig. 4.43: The applied cyclic drift history 143 Fig. 4.44: Location of LvDTs for the retrofitted specimen BD-H1 146 Fig. 4.45: Location of LvDTs for the retrofitted specimen BD-H2-D 146 Fig. 4.46: Location of Strain gauges of reinforcing bars for the refrence specimen 147 Fig. 4.48: Location of strain gauges of feinforcing bars for the retrofitted specimens: 148 A) for SD-H2-D, b) for BD-H1 and BD-H3-D 148 Fig. 4.50: Location of strain gauges of Multi Functional Corbels (HMFC) and threaded roads for the retrofitted specimen BD-H1 149 Fig. 4.51: Location of strain gauges of Multi Functional Corbels (HMFC), H		(HMFC) H2 and Harmonica Damper Plates (HHDP) D through RT2, (SD-H2-D) 1	36
 Fig. 4.38: Analysis of simplified structural retrofitted model SD-H2-D under Vcol = 95.74 kN , a) Moment diagram of structural model; b) The results of beam analysis	Fig.	4.37: Retrofitted specimen SD-H2-D 1	37
Vcol = 95.74 kN, a) Moment diagram of structural model; b) The results of beam analysis 138 Fig. 4.39: Retrofitting of the Bond Deficient specimen (BD) by Multi Functional Corbels (HMFC) H3 and Harmonica Damper Plates (HHDP) D' through RT2, (BD-H3-D) 140 Fig. 4.40: Retrofitted specimen BD-H3-D 141 Fig. 4.41: Designed loading setup 142 Fig. 4.42: Fabricated loading setup 142 Fig. 4.43: The applied cyclic drift history 143 Fig. 4.44: Location of load cells and Linear Variable Distance Transducers (LVDTs) for loading setup and as-built specimens (reference units) 145 Fig. 4.45: Location of LVDTs for the retrofitted specimen BD-H1 146 Fig. 4.46: Location of LVDTs for the retrofitted specimen BD-H3-D 147 Fig. 4.49: Location of Strain gauges of reinforcing bars for the reference specimen 147 Fig. 4.49: Location of strain gauges of Multi Functional Corbels (HMFC) and threaded roads for the retrofitted specimen BD-H3-D 148 Fig. 4.51: Location of strain gauges of Multi Functional Corbels (HMFC), Harmonica Damper Plates (HHDP), and threaded roads for the retrofitted specimen BD-H3-D 149 Fig. 4.52: Location of strain gauges of Multi Functional Corbels (HMFC), Harmonica Damper Plates (HHDP), and threaded roads for the retrofitted specimen BD-H3-D 149 Fig. 4.51: Location of strain gauges of Multi Functional Corbels (HMFC), Harmonica Damper Plates (HHDP), and threaded r	Fig.	4.38: Analysis of simplified structural retrofitted model SD-H2-D under	
analysis		Vcol = 95.74 kN, a) Moment diagram of structural model; b) The results of beam	
Fig. 4.39: Retrofitting of the Bond Deficient specimen (BD) by Multi Functional Corbels (HMFC) H3 and Harmonica Damper Plates (HHDP) D' through RT2, (BD-H3-D)		analysis 1	38
 (HMFC) H3 and Harmonica Damper Plates (HHDP) D' through RT2, (BD-H3-D) 140 Fig. 4.40: Retrofitted specimen BD-H3-D	Fig.	4.39: Retrofitting of the Bond Deficient specimen (BD) by Multi Functional Corbels	
Fig. 4.40: Retrofitted specimen BD-H3-D 141 Fig. 4.41: Designed loading setup 142 Fig. 4.42: Fabricated loading setup 143 Fig. 4.43: The applied cyclic drift history 143 Fig. 4.44: Location of load cells and Linear Variable Distance Transducers (LVDTs) for loading setup and as-built specimens (reference units) 145 Fig. 4.45: Location of LVDTs for the retrofitted specimen BD-H1 146 Fig. 4.46: Location of LVDTs for the retrofitted specimen BD-H3-D 147 Fig. 4.48: Location of strain gauges of reinforcing bars for the reference specimen 147 Fig. 4.49: Location of strain gauges of reinforcing bars for the retrofitted specimens: 148 a) for SD-H2-D, b) for BD-H1 and BD-H3-D 148 Fig. 4.50: Location of strain gauges of Multi Functional Corbels (HMFC) and threaded roads for the retrofitted specimen BD-H1 149 Fig. 4.51: Location of strain gauges of Multi Functional Corbels (HMFC), Harmonica Damper Plates (HHDP), and threaded roads for the retrofitted specimen SD-H2-D 149 Fig. 4.52: Location of strain gauges of Multi Functional Corbels (HMFC), Harmonica Damper Plates (HHDP), and threaded roads for the retrofitted specimen BD-H3-D 150 Fig. 4.54: Final failure of specimen BD-B after the first cycle of 3.5% drift 152 Fig. 4.55: Experimental story shear-drift hysteretic response of specimen BD-B 153 <		(HMFC) H3 and Harmonica Damper Plates (HHDP) D' through RT2, (BD-H3-D) 1	40
Fig. 4.41: Designed loading setup 142 Fig. 4.42: Fabricated loading setup 142 Fig. 4.43: The applied cyclic drift history 143 Fig. 4.44: Location of load cells and Linear Variable Distance Transducers (LVDTs) for loading setup and as-built specimens (reference units) 145 Fig. 4.45: Location of LVDTs for the retrofitted specimen BD-H1 146 Fig. 4.46: Location of LVDTs for the retrofitted specimen BD-H2-D 146 Fig. 4.47: Location of strain gauges of reinforcing bars for the reference specimen 147 Fig. 4.49: Location of strain gauges of reinforcing bars for the retrofitted specimens: 148 a) for SD-H2-D, b) for BD-H1 and BD-H3-D 148 Fig. 4.50: Location of strain gauges of Multi Functional Corbels (HMFC) and threaded roads for the retrofitted specimen BD-H1 149 Fig. 4.51: Location of strain gauges of Multi Functional Corbels (HMFC), Harmonica Damper Plates (HHDP), and threaded roads for the retrofitted specimen SD-H2-D 149 Fig. 4.52: Location of strain gauges of Multi Functional Corbels (HMFC), Harmonica Damper Plates (HHDP), and threaded roads for the retrofitted specimen BD-H3-D 150 Fig. 4.54: Final failure of specimen BD-B after the first cycle of 3.5% drift 152 Fig. 4.55: Experimental story shear-drift hysteretic response of specimen BD-B 153 Fig. 4.56: Imposed column axial load versus drift of specimen BD-B <td>Fig.</td> <td>4.40: Retrofitted specimen BD-H3-D 1</td> <td>41</td>	Fig.	4.40: Retrofitted specimen BD-H3-D 1	41
Fig. 4.42: Fabricated loading setup 142 Fig. 4.43: The applied cyclic drift history 143 Fig. 4.43: Cocation of load cells and Linear Variable Distance Transducers (LVDTs) for 143 Fig. 4.44: Location of LVDTs for the retrofitted specimen BD-H1 146 Fig. 4.45: Location of LVDTs for the retrofitted specimen BD-H2-D 146 Fig. 4.46: Location of LVDTs for the retrofitted specimen BD-H3-D 147 Fig. 4.47: Location of strain gauges of reinforcing bars for the retrofitted specimens: 148 a) for SD-H2-D, b) for BD-H1 and BD-H3-D 148 Fig. 4.51: Location of strain gauges of Multi Functional Corbels (HMFC) and threaded roads for the retrofitted specimen BD-H1 149 Fig. 4.51: Location of strain gauges of Multi Functional Corbels (HMFC), Harmonica 149 Fig. 4.52: Location of strain gauges of Multi Functional Corbels (HMFC), Harmonica 149 Fig. 4.52: Location of strain gauges of Multi Functional Corbels (HMFC), Harmonica 150 Damper Plates (HHDP), and threaded roads for the retrofitted specimen BD-H3-D 150 Fig. 4.53: Assumed signs of loading and displacement direction 151 Fig. 4.54: Final failure of specimen BD-B after the first cycle of 3.5% drift 152 Fig. 4.55: Experimental story shear-drift hysteretic response of specimen BD-B 153 Fi	Fig.	4.41: Designed loading setup 1	42
Fig. 4.43: The applied cyclic drift history. 143 Fig. 4.43: Location of load cells and Linear Variable Distance Transducers (LVDTs) for 10ading setup and as-built specimens (reference units). 145 Fig. 4.45: Location of LVDTs for the retrofitted specimen BD-H1 146 Fig. 4.46: Location of LVDTs for the retrofitted specimen BD-H2-D 146 Fig. 4.47: Location of LVDTs for the retrofitted specimen BD-H3-D 147 Fig. 4.48: Location of strain gauges of reinforcing bars for the retrofitted specimens: 148 a) for SD-H2-D, b) for BD-H1 and BD-H3-D 148 Fig. 4.51: Location of strain gauges of Multi Functional Corbels (HMFC) and threaded roads for the retrofitted specimen BD-H1 149 Fig. 4.51: Location of strain gauges of Multi Functional Corbels (HMFC), Harmonica 149 Fig. 4.52: Location of strain gauges of Multi Functional Corbels (HMFC), Harmonica 149 Fig. 4.52: Location of strain gauges of Multi Functional Corbels (HMFC), Harmonica 149 Fig. 4.52: Location of strain gauges of Multi Functional Corbels (HMFC), Harmonica 150 Damper Plates (HHDP), and threaded roads for the retrofitted specimen BD-H3-D 150 Fig. 4.53: Assumed signs of loading and displacement direction 151 Fig. 4.54: Final failure of specimen BD-B after the first cycle of 3.5% drift 152 Fig. 4.55: Expe	Fig.	4.42: Fabricated loading setup 1	42
Fig. 4.44: Location of load cells and Linear Variable Distance Transducers (LVDTs) for 145 Ioading setup and as-built specimens (reference units)	Fig.	4.43: The applied cyclic drift history	43
 loading setup and as-built specimens (reference units)	Fig.	4.44: Location of load cells and Linear Variable Distance Transducers (LVDTs) for	
Fig. 4.45: Location of LVDTs for the retrofitted specimen BD-H1 146 Fig. 4.46: Location of LVDTs for the retrofitted specimen SD-H2-D 146 Fig. 4.47: Location of LVDTs for the retrofitted specimen BD-H3-D 147 Fig. 4.48: Location of strain gauges of reinforcing bars for the reference specimen 147 Fig. 4.49: Location of strain gauges of reinforcing bars for the retrofitted specimens: 148 a) for SD-H2-D, b) for BD-H1 and BD-H3-D 148 Fig. 4.50: Location of strain gauges of Multi Functional Corbels (HMFC) and threaded roads for the retrofitted specimen BD-H1 149 Fig. 4.51: Location of strain gauges of Multi Functional Corbels (HMFC), Harmonica Damper Plates (HHDP), and threaded roads for the retrofitted specimen SD-H2-D 149 Fig. 4.52: Location of strain gauges of Multi Functional Corbels (HMFC), Harmonica Damper Plates (HHDP), and threaded roads for the retrofitted specimen BD-H3-D 150 Fig. 4.54: Final failure of specimen BD-B after the first cycle of 3.5% drift 152 Fig. 4.55: Experimental story shear-drift hysteretic response of specimen BD-B 153 Fig. 4.57: The envelope diagram for Max. strain of beam longitudinal bars at the beam-column interface versus story drift of specimen BD-B 153 Fig. 4.58: Crack patterns and damage mode sequence of specimen BD-B at different levels of drifts 156 Fig. 4.59: The relationship between joint principal tensile stress (ftjf'c		loading setup and as-built specimens (reference units)	45
Fig. 4.46: Location of LVD1s for the retrofitted specimen SD-H2-D 146 Fig. 4.47: Location of LVDTs for the retrofitted specimen BD-H3-D 147 Fig. 4.48: Location of strain gauges of reinforcing bars for the reference specimen 147 Fig. 4.49: Location of strain gauges of reinforcing bars for the retrofitted specimens: 148 a) for SD-H2-D, b) for BD-H1 and BD-H3-D 148 Fig. 4.50: Location of strain gauges of Multi Functional Corbels (HMFC) and threaded roads for the retrofitted specimen BD-H1 149 Fig. 4.51: Location of strain gauges of Multi Functional Corbels (HMFC), Harmonica Damper Plates (HHDP), and threaded roads for the retrofitted specimen SD-H2-D 149 Fig. 4.52: Location of strain gauges of Multi Functional Corbels (HMFC), Harmonica Damper Plates (HHDP), and threaded roads for the retrofitted specimen BD-H3-D 149 Fig. 4.53: Assumed signs of loading and displacement direction 151 Fig. 4.54: Final failure of specimen BD-B after the first cycle of 3.5% drift 152 Fig. 4.56: Imposed column axial load versus drift of specimen BD-B 153 Fig. 4.57: The envelope diagram for Max. strain of beam longitudinal bars at the beam-column interface versus story drift of specimen BD-B 153 Fig. 4.59: The relationship between joint principal tensile stress (ftjf'c) and story drift of specimen BD-B 156	Fig.	4.45: Location of LVDTs for the retrofitted specimen BD-H1	46
 Fig. 4.4/: Location of LVD1s for the retrofitted specimen BD-H3-D	Fig.	4.46: Location of LVDTs for the retrofitted specimen SD-H2-D	46
 Fig. 4.48: Location of strain gauges of reinforcing bars for the reference specimen	Fig.	4.47: Location of LVDTs for the retrofitted specimen BD-H3-D	47
 Fig. 4.49: Location of strain gauges of reinforcing bars for the retrofitted specimens:	Fig.	4.48: Location of strain gauges of reinforcing bars for the reference specimen	47
 a) for SD-H2-D, b) for BD-H1 and BD-H3-D	Fig.	4.49: Location of strain gauges of reinforcing bars for the retrofitted specimens:	48
 Fig. 4.50: Location of strain gauges of Multi Functional Corbels (HMFC) and threaded roads for the retrofitted specimen BD-H1	a) to	r SD-H2-D, b) for BD-H1 and BD-H3-D	48
 Fig. 4.51: Location of strain gauges of Multi Functional Corbels (HMFC), Harmonica Damper Plates (HHDP), and threaded roads for the retrofitted specimen SD-H2-D 149 Fig. 4.52: Location of strain gauges of Multi Functional Corbels (HMFC), Harmonica Damper Plates (HHDP), and threaded roads for the retrofitted specimen BD-H3-D 150 Fig. 4.53: Assumed signs of loading and displacement direction	Fig.	4.50: Location of strain gauges of Multi Functional Corbeis (HMFC) and threaded road	
 Fig. 4.51: Location of strain gauges of Multi Functional Corbels (HMFC), Harmonica Damper Plates (HHDP), and threaded roads for the retrofitted specimen SD-H2-D 149 Fig. 4.52: Location of strain gauges of Multi Functional Corbels (HMFC), Harmonica Damper Plates (HHDP), and threaded roads for the retrofitted specimen BD-H3-D 150 Fig. 4.53: Assumed signs of loading and displacement direction	.	for the retrofitted specimen BD-H1	49
 Damper Plates (HHDP), and threaded roads for the retrofitted specimen SD-H2-D 149 Fig. 4.52: Location of strain gauges of Multi Functional Corbels (HMFC), Harmonica Damper Plates (HHDP), and threaded roads for the retrofitted specimen BD-H3-D 150 Fig. 4.53: Assumed signs of loading and displacement direction	Fig.	4.51: Location of strain gauges of Multi Functional Corbeis (HMFC), Harmonica	40
 Fig. 4.52: Location of strain gauges of Multi Functional Corbets (HMFC), Harmonica Damper Plates (HHDP), and threaded roads for the retrofitted specimen BD-H3-D 150 Fig. 4.53: Assumed signs of loading and displacement direction	E.	Damper Plates (HHDP), and threaded roads for the retrolited specimen SD-H2-D I	49
 Fig. 4.53: Assumed signs of loading and displacement direction	Fig.	4.52: Location of strain gauges of Multi Functional Corders (HMFC), Harmonica	50
 Fig. 4.55. Assumed signs of loading and displacement direction Fig. 4.54: Final failure of specimen BD-B after the first cycle of 3.5% drift Fig. 4.55: Experimental story shear-drift hysteretic response of specimen BD-B Fig. 4.56: Imposed column axial load versus drift of specimen BD-B Fig. 4.57: The envelope diagram for Max. strain of beam longitudinal bars at the beam-column interface versus story drift of specimen BD-B Fig. 4.58: Crack patterns and damage mode sequence of specimen BD-B at different levels of drifts fig. 4.59: The relationship between joint principal tensile stress (ftjf'c) and story drift of specimen BD-B 	Ein	Damper Plates (HHDP), and threaded roads for the retronted specifien BD-H3-D 1	50
 Fig. 4.54. Final failure of specimen BD-B after the first cycle of 5.5% diff. Fig. 4.55: Experimental story shear-drift hysteretic response of specimen BD-B	Fig.	4.55. Assumed signs of roading and displacement direction	52
 Fig. 4.55: Experimental story shear-unit hysterenc response of specimen BD-B	Fig.	4.54. Final failule of specifien BD-B after the first cycle of 5.5% diff	52
 Fig. 4.50: Imposed column axia load versus diff of specifier BD-B	Fig.	4.55. Experimental story shear-unit hysteretic response of specimen BD-D	52
 rig. 4.57: The chivelope diagram for wax: strain of ocam longitudinal outs at the ocam column interface versus story drift of specimen BD-B. fig. 4.58: Crack patterns and damage mode sequence of specimen BD-B at different levels of drifts drifts 156 Fig. 4.59: The relationship between joint principal tensile stress (ftjf'c) and story drift of specimen BD-B. 157 	Fig.	4.50. The envelope diagram for Max, strain of beam longitudinal bars at the beam	55
Fig. 4.58: Crack patterns and damage mode sequence of specimen BD-B at different levels of drifts	rig.	column interface versus story drift of specimen BD-B	53
 drifts	Fig.	4.58: Crack patterns and damage mode sequence of specimen RD-B at different levels	of
Fig. 4.59: The relationship between joint principal tensile stress (ftjf'c) and story drift of specimen BD-B	1 15.	drifte	56
specimen BD-B	Fig .	4.59. The relationship between joint principal tensile stress (ftif'c) and story drift of	
	5-	specimen BD-B	57

Fig. 4.60: The relationship between absolute value of (joint horizontal shear stress)	
Vjh(Aef'c) and story drift of specimen BD-B	. 158
Fig. 4.61: LVDT layout for measurement of joint shear deformation and horizontal	
displacement component	. 159
Fig. 4.62: The relationship among joint principal tensile stress (ftjf'c), story drift, and join	nt
shear deformation (γ) of specimen BD-B	. 159
Fig. 4.63: : Percentage contributions of beam, column and joint displacement in specimen	
BD-B to: a) total displacements in every drift level, b)total displacements of all drift	
levels	160
Fig. 4.64: Final failure of SD-B after 3.5% drifts level	. 161
Fig. 4.65: Experimental story shear-drift hysteretic response of specimen SD-B	. 162
Fig. 4.66: Imposed column axial load versus drift of specimen SD-B	. 162
Fig. 4.67: The envelope diagram for Max. strain of beam longitudinal bars at the beam-	
column interface versus story drift of specimen SD-B	. 163
Fig. 4.68: Crack patterns and damage mode sequence of specimen SD-B at different levels	s of
drifts	. 165
Fig. 4.69: The relationship between joint principal tensile stress (ftjf'c) and story drift of	•
specimen SD-B	. 166
Fig. 4.70: The relationship between absolute value of (joint horizontal shear stress)	
Vjh(Aef'c) and story drift of specimen SD-B	. 167
Fig. 4.71: The relationship among joint principal tensile stress (ftjf'c), story drift, and join	nt
shear deformation (γ) of specimen SD-B	. 167
Fig. 4.72: Percentage contributions of beam, column and joint displacement in specimen	
SD-B to: a) total displacements in every drift level, b) total displacements of all drift	
levels	. 168
Fig. 4.73: Retrofitted specimen BD-H1 after 4.5% drifts level	. 170
Fig. 4.74: Experimental story shear-drift hysteretic response of specimen BD-H1	. 170
Fig. 4.75: Imposed column axial load versus drift of specimen BD-H1	. 171
Fig. 4.76: The envelope diagram for Max. strain of beam longitudinal bars at the beam-	
column interface versus story drift of specimen BD-H1	. 172
Fig. 4.77: The envelope diagram for Max. strain of beam longitudinal bars at the end of	
HMFC versus story drift of specimen BD-H1	172
Fig. 4.78: Crack patterns and damage mode sequence of specimen BD-H1	175
at different levels of drifts	175
Fig. 4.79: The relationship between joint principal tensile stress (ftjf'c) and story drift of	•
specimen BD-H1	176
Fig. 4.80: The relationship between absolute value of (joint horizontal shear stress)	
Vjh(Aef'c) and story drift of specimen BD-H1	. 177
Fig. 4.81: LVDT layout for measurement of joint shear deformation and horizontal	
displacement component of BD-H1	. 177
Fig. 4.82: The relationship among joint principal tensile stress (ftjf'c), story drift, and join	nt
shear deformation (γ) of specimen BD-H1	. 178
Fig. 4.83: The Hysteretic and envelope diagram for strain of top HMFC versus story drift	of
specimen BD-H1	. 179

Fig. 4.84: The Hysteretic and envelope diagram for strain of bottom HMFC versus story drift
of specimen BD-HI
Fig. 4.85: Percentage contributions of beam, column and joint displacement in specimen
BD-H1 to: a) total displacements in every drift level, b)total displacements of all drift
levels
Fig. 4.86: Retrofitted specimen SD-H2-D after 4.5% drifts level
Fig. 4.87: Experimental story shear-drift hysteretic response of specimen SD-H2-D
Fig. 4.88: Imposed column axial load versus drift of specimen SD-H2-D
Fig. 4.89.: The envelope diagram for Max. strain of beam longitudinal bars at the beam-
column interface versus story drift of specimen SD-H2-D
Fig. 4.90: The envelope diagram for Max. strain of beam longitudinal bars at the end of
HMFC versus story drift of specimen SD-H2-D 184
Fig. 4.91: Crack patterns and damage mode sequence of specimen SD-H2-D at different levels
of drifts
Fig. 4.92: The relationship between joint principal tensile stress (ftjf'c) and story drift of
specimen SD-H2-D
Fig. 4.93: The relationship between absolute value of (joint horizontal shear stress)
Vih(Aef'c) and story drift of specimen SD-H2-D
Fig 4.94: LVDT layout for measurement of joint shear deformation and horizontal
displacement component of SD-H2-D
Fig. 4.95: The relationship among joint principal tensile stress (ftif'c), story drift, and joint
shear deformation (v) of specimen SD-H2-D
Fig. 4.96: The Hysteretic and envelope diagram for strain of top and bottom HMECs versus
story drift of specimen SD H2 D
Fig. 4 97: The Hysteretic and envelope diagram for strain of top and bottom HHDPs versus
story drift of specimen SD H2 D
Fig. 4.09: Dereenters contributions of beam, column and joint displacement in specimen SD
H2 D to: a) total displacements in every drift level b) total displacements of all drift
H2-D to: a) total displacements in every drift level, b) total displacements of an drift
Fig. 4.00. Detrection DD U2 Defer 4.50/ drifte level
Fig. 4.99. Retrollided specimen BD-H3-D alter 4.3% drifts level
Fig. 4.100: Experimental story shear-drift hysteretic response of specimen BD-H3-D 194
Fig. 4.101: Imposed column axial load versus drift of specimen BD-H3-D
Fig. 4.102.: The envelope diagram for Max. strain of beam longitudinal bars at the beam-
column interface versus story drift of specimen SD-H2-D 195
Fig. 4.103: The envelope diagram for Max. strain of beam longitudinal bars at the end of
HMFC versus story drift of specimen BD-H3-D 196
Fig. 4.104: Crack patterns and damage mode sequence of specimen BD-H3-D at different
levels of drifts
Fig. 4.105: The relationship between joint principal tensile stress (ftjf'c) and story drift of
specimen BD-H3-D
Fig. 4.106: The relationship between absolute value of (joint horizontal shear stress)
Vjh(Aef'c) and story drift of specimen BD-H3-D
Fig. 4.107: The relationship among joint principal tensile stress (ftjf'c), story drift, and joint
shear deformation (γ) of specimen BD-H3-D

Fig. 4.108: The Hysteretic and envelope diagram for strain of top and bottom HMFCs	s versus
story drift of specimen BD-H3-D	202
Fig. 4.109: The Hysteretic and envelope diagram for strain of top and bottom HHDPs	versus
story drift of specimen BD-H3-D	202
Fig. 4.110: Shear failure of bolts	203
Fig. 4.111: Percentage contributions of beam, column and joint displacement in speci	men
BD-H3-D to a) total displacements in every drift level, b)total displacements of a	all drift
levels	204
Fig. 4.112: Comparison the hysteresis loops of as-built specimen BD-B with retrofitte	ed unit
BD-H1	206
Fig. 4.113: Comparison the hysteresis loops of as-built specimen BD-B with retrofitte	ed unit
BD-H3-D	206
Fig. 4.114: Comparison the envelop strengths in the category of BD	207
Fig. 4.115: Comparison the relative story shear strength in the negative and positive d	lirections
of the category of BD	208
Fig. 4.116: Comparison the hysteresis loops of as-built specimen SD-B with retrofitte	d unit
SD-H2-D	209
Fig. 4.117: Comparison the envelop strengths in the category of SD	209
Fig. 4.118: Comparison the relative story shear strength in the negative and positive d	lirections
of the category of SD	
Fig. 4.119: Comparison the envelop strengths of all specimens	
Fig. 4.120: The retained column axial load at the end of last cycle of final drift level (3.5% for
reference units and 4.5% for retrofitted specimens)	
Fig. 4.121: Comparison the maximum strength degradation of all specimens with resp	pect to
last cycle of 3.5% drift level	
Fig. 4.122: Relatively comparison of initial stiffness in all specimens	
Fig. 4.123: Comparison the energy dissipations in the category of BD	
Fig. 4.124: Comparison the energy dissipations in the category of SD	
Fig. 4.125: Comparison the energy dissipations in all specimens	
Fig. 4.126: Comparison the energy dissipations in specimens and estimated contribution	on of
subassemblages	
Fig. 4.127: Comparison the energy dissipation ratio of retrofitted specimens in last cy	cle of
3.5% drift level	
Fig. 4.128: Max. Observed joint horizontal shear stress in test specimens versus code	
conforming nominal shear strength of the tested external joint	
Fig. 4.129: Total percentage contributions of beam, column and joint displacement in	every
test specimen	220
Fig. 5.1: Uniaxial constitutive stress-strain law and softening law for concrete	223
Fig. 5.2: Definition of localization bands	
Fig. 5.3: Biaxial failure function for concrete	
Fig. 5.4: Rotated cracks and fixed crack regions	
Fig. 5.5: Bilinear and multi-linear stress-strain law for reinforcement	
Fig. 5.6: Failure surface for interface elements	
Fig. 5.7: Typical interface model behaviour in: (a) shear, (b) tension	
Fig. 5.8: Numerical model for: a) BD-B; b) SD-B	

Fig.	5.9: Reinforcement model for: a) BD-B; and b) SD-B
Fig.	5.10: Envelope lateral strength-drift diagram for different FE element sizes
Fig.	5.11: Envelope lateral strength-drift diagram for various values of fracture energy (Gf)
Fig.	5.12: Envelope lateral strength-drift diagram for different reinforcement material 235
Fig.	5.13: Envelope lateral strength-drift diagram for various values of tension stiffening (Cts)
Fig.	5.14: Envelope lateral strength-drift diagram for different smeared cracking models $\dots 237$
Fig.	5.15: Numerical model for BD-H1: a) General finite element mesh, b) Reinforcement,
	c) Multi Functional Corbel , HMFC (H1)
Fig.	5.16: Numerical model for SD-H2-D: a) General finite element mesh, b) Reinforcement
	c) Multi Functional Corbel HMFC (H2), d) Harmonica Damper Plate HHDP (D) 239
Fig.	5.17: Numerical model for BD-H3-D: a) General finite element mesh, b) Reinforcement
	c) Multi Functional Corbel HMFC (H3), d) Harmonica Damper Plate HHDP (D') 240
Fig.	5.18: Story shear-drift hysteresis plot of reference unit BD-B from numerical analysis 241
Fig.	5.19: Envelope story shear-drift hysteresis plot of reference unit BD-B from numerical
	analysis and experimental study
Fig.	5.20: Overall final cracking pattern of reference unit BD-B
Fig.	5.21: Comparison of crack pattern for reference unit BD-B from: a) numerical analysis
	and b) experimental test
Fig.	5.22: Story shear-drift hysteresis plot of reference unit SD-B from numerical analysis 243
Fig.	5.23: Envelope story shear-drift hysteresis plot of reference unit SD-B from numerical
.	analysis and experimental study
Fig.	5.24: Overall final cracking pattern of reference unit SD-B
Fig.	5.25: Comparison of crack pattern for reference unit SD-B from: a) numerical analysis
г.	and b) experimental test
Fig.	5.26: Story shear-drift hysteresis plot of retrofitted specimen BD-H1 from numerical
г:	analysis
Fig.	5.2/? Envelope story snear-drift hysteresis plot of retrontted specimen BD-H1 from
Fig	5 28: Comparison of arealy pattern for rate fitted aposimon PD 111 from: a) numerical
гıg.	5.26. Comparison of crack patient for reformed specifient BD-H1 from: a) numerical
Fig	5 20: Principal yield strain pattern for HMEC (H1) in retrofitted specimen BD H1 248
Fig.	5.29. Interpart yield strain patern for finite (fift) in federated specimen SD H2 D from numerical
r ig.	analysis 248
Fig	5 31: Envelope story shear drift hysteresis plot of retrofitted specimen SD H2 D from
rig.	numerical analysis and experimental study 249
Fig	5 32: Comparison of crack pattern for retrofitted specimen SD-H2-D from: a) numerical
1 Ig.	analysis and h) experimental test 250
Fig	5 33: Principal yield strain pattern for HMEC (H2) in retrofitted specimen SD-H2-D 250
Fig.	5.35: Principal yield strain pattern for HHDP (D) in retrofitted specimen SD-H2-D 251
Fig.	5 35: Story shear-drift hysteresis plot of retrofitted specimen BD-H3-D from numerical
5-	analysis 251
Fig	5 36: Envelope story shear-drift hysteresis plot of retrofitted specimen RD-H3-D from
8.	numerical analysis and experimental study

Fig.	5.37: Comparison of crack pattern for retrofitted specimen BD-H3-D from: a) numer	cal
	analysis and b) experimental test	.253
Fig.	5.38: Principal yield strain pattern for HMFC (H3) in retrofitted specimen BD-H3-D	.253
Fig.	5.39: Principal yield strain pattern for HHDP (D') in retrofitted specimen BD-H3-D.	.254
Fig.	5.40: Retrofitting Technique 3 (RT3) by HMFC and HFBDP	.255
Fig.	5.41: Friction test between steel plates and concrete surface: a) an innovative designe	d
U	friction test device; b) fabricated test device; c) installation of test device in test mach	nine
Ein	5.42. Commencies of load align surgest of steal compared friction in test and simulation	. 236
Fig.	3.42. Comparison of load-sup curves of sever-concrete inction in test and simulation	256
Ein	a) for grinded surface of concrete, b) for not grinded surface of concrete	. 230
Fig.	for numerically analysed specimen BD-H1-F	. 257
Fig.	5.44: Story shear-drift hysteresis plot of developed new upgrading method, Retrofitting	ıg
	Technique 3 (RT3) for numerically analysed specimen BD-H1-F	.258
Fig.	5.45: Envelope story shear-drift hysteresis plot of developed new upgrading method,	
	Retrofitting Technique 3 (RT3) for numerically analysed specimen BD-H1-F	. 258
Fig.	5.46: Principal yield strain pattern for HMFC (H1) and HFBDP (F) in retrofitted	
	specimen BD-H1-F	. 259
Fig.	5.47: Principal yield strain pattern for HFBDP (F) in retrofitted specimen BD-H1-F	. 259
Fig.	5.48: Comparison the energy dissipations in all specimens	260
Fig.	5.49: Comparison the energy dissipation ratio of retrofitted specimens in last cycle of	
	3.5% drift level	261
Fig.	5.50: Comparison the energy dissipations in specimens and estimated contribution of	
	subassemblages	261
Fig.	A.1: Formwork Plan	. 279
Fig.	A.2: Details of formwork	. 280
Fig.	A.3: a) Specimen bracing, b) Formwork and bracing	. 281
Fig.	B.1: Designed loading setup	. 282
Fig.	B.2: Fabricated loading setup	. 283
Fig.	B.3: Loading setup: Top view of level 5	. 284
Fig.	B.4: Loading setup: Top view of level 4	. 285
Fig.	B.5: Loading setup: Top view of level 3	. 286
Fig.	B.6: Loading setup: Top view of level 2	. 287
Fig.	B.7: Loading setup: Top view of level 1	. 288
Fig.	B.8: Loading setup: Details of top compartment (Det. 1)	. 289
Fig.	B.9: Loading setup: Fabricated top compartment	. 289
Fig.	B.10: Loading setup: Checking the necessity of second mechanical hinge, balance car	se
		. 290
Fig.	B.11: Loading setup: Checking the necessity of second mechanical hinge, side sway	0
	left	. 291
Fig.	B.12: Loading setup: Checking the necessity of second mechanical hinge, side sway	0
	right	. 291
Fig.	B.13: Loading setup: Details of designed second mechanical hinge	. 292
Fig.	B.14: Loading setup: Fabrication of second mechanical hinge	. 293
Fig.	B.15: Loading setup: Second mechanical hinge, Max. allowable rotation	. 293

Fig. B.16: Loading setup: Rotation of second mechanical hinge	294
Fig. B.17: Loading setup: Details of top compartment (Det. 3)	294
Fig. B.18: Loading setup: Details of movable support (Det. 4)	295
Fig. B.19: Loading setup: Fabrication of movable support (Det. 4)	296
Fig. B.20: Loading setup: Details of fixed hinge (Det. 5)	297
Fig. b.21: Loading setup: Fabrication of fixed support (Det. 5)	298
Fig. B.22: Loading setup: Details of reaction frame (Det. 6)	299
Fig. B.23: Loading setup: Fabrication of reaction frame and its connection (Det. 6)	301
Fig. B.24: Loading setup: Details of base plates (Det. 7)	301
Fig. B.25: Loading setup: Fabricated base plate (Det. 7)	302
Fig. B.26: Loading setup: Designed lateral support of test specimens	302
Fig. B.27: Loading setup: fabricated lateral support of test specimens	303
Fig. B.28: Loading setup: a) overhead horizontal traveling support of cyclic actuator,	
b) cyclic actuator	303
Fig. B.29: Loading setup: a) installation of cyclic actuator to loading setup,	
b) installed cyclic actuator	304
Fig. B.30: Loading setup: a) loading setup, b) hydraulic jack for static loads	304
Fig. C.1: Loading setup: Proposed installation process of specimens in loading setup	306
Fig. C.2: Loading setup: Installation of specimens in loading setup	307
Fig. D.1: Measurement of beam and column fix-end rotation	308
Fig. D.2: Measurement of joint deformation: a) LVDT layout for joint shear strain	
measurement, b) Sign conventions for joint shear strain	309
Fig. D.3: Contribution of beam, column and joint to the total lateral displacement	311
Fig. D.4: Measurement of beam rotation at the end of HMFC	311
Fig. D.5: Contribution of beam at the end of HMFC to the total lateral displacement	312
Fig. E.1: Concept of relative energy dissipation ratio	313

List of tables

Table 4.1: Average measured properties of concrete 99 Table 4.2: Average measured properties of reinforcing steel bars 100 Table 4.3: Summary of the design requirements for the test specimens based on the codes of practice for seismic resistant 103 Table 4.4: Summary of the predicted nominal strengths of beam-column joint specimens' subassemblages 103 Table 4.5: Summary of the retrofitted specimen's nomination 110 Table 4.6: Properties of 3X2-12-12 Hardwire composite 123 Table 4.7: Failure modes of test specimens 216 Table 4.8: Hierarchy of strength for reference units 217 Table 4.9: Hierarchy of strength for retrofitted specimens 217 Table 4.10: Joint stresses and strains of test specimens 218	Table 2.1: Comparison of the codes of practice in design of exterior beam-column joints	. 55
Table 4.2: Average measured properties of reinforcing steel bars. 100 Table 4.3: Summary of the design requirements for the test specimens based on the codes of practice for seismic resistant 103 Table 4.4: Summary of the predicted nominal strengths of beam-column joint specimens' subassemblages 103 Table 4.5: Summary of the retrofitted specimen's nomination 110 Table 4.6: Properties of 3X2-12-12 Hardwire composite 123 Table 4.7: Failure modes of test specimens 216 Table 4.8: Hierarchy of strength for reference units 217 Table 4.9: Hierarchy of strength for retrofitted specimens 217 Table 4.10: Joint stresses and strains of test specimens 218	Table 4.1: Average measured properties of concrete	. 99
Table 4.3: Summary of the design requirements for the test specimens based on the codes of practice for seismic resistant 103 Table 4.4: Summary of the predicted nominal strengths of beam-column joint specimens' subassemblages 103 Table 4.5: Summary of the retrofitted specimen's nomination 110 Table 4.6: Properties of 3X2-12-12 Hardwire composite 123 Table 4.7: Failure modes of test specimens 216 Table 4.8: Hierarchy of strength for reference units 217 Table 4.9: Hierarchy of strength for retrofitted specimens 217 Table 4.10: Joint stresses and strains of test specimens 218	Table 4.2: Average measured properties of reinforcing steel bars	100
practice for seismic resistant103Table 4.4: Summary of the predicted nominal strengths of beam-column joint specimens' subassemblages103Table 4.5: Summary of the retrofitted specimen's nomination110Table 4.6: Properties of 3X2-12-12 Hardwire composite123Table 4.7: Failure modes of test specimens216Table 4.8: Hierarchy of strength for reference units217Table 4.9: Hierarchy of strength for retrofitted specimens217Table 4.10: Joint stresses and strains of test specimens218	Table 4.3: Summary of the design requirements for the test specimens based on the codes of	of
Table 4.4: Summary of the predicted nominal strengths of beam-column joint specimens' 103 Subassemblages 103 Table 4.5: Summary of the retrofitted specimen's nomination 110 Table 4.6: Properties of 3X2-12-12 Hardwire composite 123 Table 4.7: Failure modes of test specimens 216 Table 4.8: Hierarchy of strength for reference units 217 Table 4.9: Hierarchy of strength for retrofitted specimens 217 Table 4.10: Joint stresses and strains of test specimens 218	practice for seismic resistant	103
subassemblages103Table 4.5: Summary of the retrofitted specimen's nomination110Table 4.6: Properties of 3X2-12-12 Hardwire composite123Table 4.7: Failure modes of test specimens216Table 4.8: Hierarchy of strength for reference units217Table 4.9: Hierarchy of strength for retrofitted specimens217Table 4.10: Joint stresses and strains of test specimens218	Table 4.4: Summary of the predicted nominal strengths of beam-column joint specimens'	
Table 4.5: Summary of the retrofitted specimen's nomination110Table 4.6: Properties of 3X2-12-12 Hardwire composite123Table 4.7: Failure modes of test specimens216Table 4.8: Hierarchy of strength for reference units217Table 4.9: Hierarchy of strength for retrofitted specimens217Table 4.10: Joint stresses and strains of test specimens218	subassemblages	103
Table 4.6: Properties of 3X2-12-12 Hardwire composite123Table 4.7: Failure modes of test specimens216Table 4.8: Hierarchy of strength for reference units217Table 4.9: Hierarchy of strength for retrofitted specimens217Table 4.10: Joint stresses and strains of test specimens218	Table 4.5: Summary of the retrofitted specimen's nomination	
Table 4.7: Failure modes of test specimens216Table 4.8: Hierarchy of strength for reference units217Table 4.9: Hierarchy of strength for retrofitted specimens217Table 4.10: Joint stresses and strains of test specimens218	Table 4.6: Properties of 3X2-12-12 Hardwire composite	123
Table 4.8: Hierarchy of strength for reference units 217 Table 4.9: Hierarchy of strength for retrofitted specimens 217 Table 4.10: Joint stresses and strains of test specimens 218	Table 4.7: Failure modes of test specimens	216
Table 4.9: Hierarchy of strength for retrofitted specimens 217 Table 4.10: Joint stresses and strains of test specimens 218	Table 4.8: Hierarchy of strength for reference units 2	217
Table 4.10: Joint stresses and strains of test specimens	Table 4.9: Hierarchy of strength for retrofitted specimens	217
	218	

Notation

- *A_{ch}* cross-sectional area of a structural member measured to the outside edges of transverse reinforcement, mm²
- A_e effective joint cross-sectional area, mm²
- A_a gross area of concrete, mm²
- A_h the area of the third cycle to the drift ratio of 3.5%
- A_j effective joint cross-sectional area, mm², computed from joint depth (h_c) times effective joint width (the overall width of the column, except where a beam frames into a wider column, effective joint width shall not exceed the smaller of: a) beam width plus joint depth, b) twice the smaller perpendicular distance from longitudinal axis of beam to column side
- A_{s1} area of the beam top reinforcement, mm²

$$A_{s2}$$
 area of the beam bottom reinforcement, mm²

- A_{sh} total cross-sectional area of transverse reinforcement including crossties within spacing s and perpendicular to dimension b_c , mm²
- $A_{sv,i}$ total area of the intermediate bars placed in the relevant column faces between corners of the column including bars contributing to the longitudinal reinforcement of columns, mm²
- A_{Tih} total area of the horizontal hoops in a beam-column joint, mm²
- b_b width of the longitudinal beam, mm
- b_c width of the column, mm
- b_j effective joint width, mm, should not exceed the smallest of $(\frac{b_b+b_c}{2}, b_b + \frac{\sum mh_c}{2}, b_c)$, where beam-column eccentricity exceeds $b_c/8$, m=0.3, otherwise m=0.5
- $\begin{array}{l} b_{jj} & \quad \text{effective joint width, if } b_c \!\!>\!\! b_{w} \!\!: b_{jj} \!\!= \min\{b_c; (b_w + 0.5h_c)\}; \text{ if } b_c < b_w \!\!: b_{jj} \!\!= \\ & \quad \min\{b_w; (b_c + 0.5h_c)\} \end{array}$
- b_w width of beam web, mm
- d_b nominal diameter of bar, mm
- E_0 initial elastic modulus for concrete, MPa
- E_c secant elastic modulus at the peak stress for concrete, MPa
- E_1 the peak lateral resistance for the positive lateral loading direction

E_2	the peak lateral resistance for the negative lateral loading direction
f_{cd}	design value of concrete compressive strength, MPa
F _{ps}	post-tensioning force of the bottom corbel, N
$f_{c}^{'}$	specified compressive strength of concrete, MPa
$f_c^{\prime ef}$	concrete effective compressive strength, MPa
f'_t^{ef}	the effective tensile strength, MPa
f _{cd}	design value of concrete compressive strength, MPa
f _{ck}	strength of concrete, MPa
f _{ctd}	design value of the tensile strength of concrete, MPa
f _{ctm}	mean value of tensile strength of concrete, given as $0.3f_c^{'(0.667)}$
f_y	specified yield strength of reinforcement, MPa
f_{yd}	design value of yield strength, MPa
f_{yt}	specified yield strength of transverse reinforcement, MPa
f _{ywd}	design value of the yield strength of the transverse reinforcement, MPa
h _c	overall cross-sectional depth of column, mm
h _{jc}	distance between extreme layers of column reinforcement, mm
h _{jw}	distance between the top and the bottom reinforcement of the beam, mm
h_v	vertical distance of horizontal LVDTs at the end of beam or HMFC, mm
h_h	horizontal distance of vertical LVDTs at the end of column, mm
h_x	Max. center-to-center spacing of crosstie legs on all faces of the column, mm
J_2	second invariant of stress deviator tensor
k	shape parameter the relation of Stress-strain for concrete
l_c	story height, length of column, measured center-to-center of the top and bottom
	beams, mm
l _{cn}	clear length of the column, mm
lb	span length of beam, measured center-to-center of the column, mm
l _d	development length in tension of deformed bar based on the building codes,
	mm
l _{dh}	development length in tension of deformed bar with a standard hook, measured
	from critical section to outside end of hook, mm
l_{nb}	clear length of beam from face of columns, mm

M_{bc}	Joint moment at the beam joint interface, N.m
\overline{M}_{bc}	joint moment capacity of the exterior beam-column joint at the beam joint interface, N.m
M _{nbc}	beam bending moment capacity or beam yielding at joint interface, N.m
M _{ncb}	column bending moment capacity or column yielding at joint interface, N.m
Ν	column axial load, N
N_{Ed}	design axial force from the analysis for the seismic design (the minimum value
	from load combination), is assumed positive when compressive, N
S	center-to-center spacing of transverse reinforcement within the joint, mm
r _{ec}	reduction factor of the compressive strength
r _{et}	reduction factor of the tensile strength
V_b	shear force across the beam, N
V_c	shear force in the column above the joint, from the analysis in the seismic
	design situation, N
V _{col}	shear force in the column above the joint, N
\bar{V}_{col}	story shear capacity of the as-built exterior beam-column jointcorresponding to
	the certain strength, N
\bar{V}_{col}	story shear capacity of the retrofitted exterior beam-column jointcorresponding
	to the certain strength, N
v_d	normalized design axial force of column
V _{jhd}	horizontal shear force acting on the concrete core of the exterior joint, N
V_{jh}	horizontal shear force acting on the concrete core of the exterior joint, N
V_{nb}	beam shear strength, N
Vnc	column shear strength, N
w	the crack opening, mm
Wc	crack opening at the complete release of stress, mm
х	normalized strain
z_b	internal moment arm in the beam, mm
z_{ps}	proper moment arm of the bottom corbel post-tensioning, mm
α	stress multiplier for beam longitudinal bars
β	relative energy dissipation ratio
γ	joint shear strain
γ_{Rd}	model uncertainty factor for the design value of resistance for beam

xxiii

	longitudinal bars, given as 1.2
γ_{xz}	shear strain
ε	normal strain
ε _c	strain at the peak stress $f'_c{}^{ef}$
ε_x	normal strain of joint panel in the x direction
\mathcal{E}_{Z}	normal strain of joint panel in the z direction
ε_{arphi}	strain in joint panel in an arbitrary direction (diagonal) with an angle of $\boldsymbol{\phi}$
	measured counter clockwise from the x axis
θ'_1	drift ratio in positive direction
θ'_{2}	drift ratio in negative direction
σ_c^{ef}	concrete compressive stress for the relation of Stress-strain for concrete, MPa
η	reduction factor on concrete compressive strength due to tensile strain in
	transverse direction
$\sum M_{nc}$	sum of nominal flexural strength of columns framing into the joint, N.mm
$\sum M_{nb}$	sum of nominal flexural strength of beams framing into the joint, N.mm

ACI	American Concrete Institute
ASCE	American Society of Civil Engineers
BD	Bond Deficiency
CFRP	Carbon Fiber-Reinforced Polymer
CORDIS	Community Research and Development Information Service
CSA	Canadian Concrete Design Code
DIN	Deutsches Institut für Normung
DTAM	Digital World Tectonic Activity Map
FRP	Fiber-Reinforced Polymer
EN	Europäisiche Norm
HFBDP	Hayatrouhi Frictional-Bending Damper Plate
HHDP	Hayatrouhi Harmonica Damper Plate
HMFC	Hayatrouhi Multi Functional Corbel

xxiv

- HPFRC High-Performance Fiber-Reinforced Concrete
- GFRP Glass Fiber-Reinforced Polymer
- GLD Gravity Load Designed
- GSHAP Global Seismic Hazard Assessment Program
- LVDT Linear Variable Distance Transducer
- NASA National Aeronautics and Space Administration
- NPO Non Profit Organisationen
- NSM Near-Surface-Mounted
- RC Reinforced Concrete
- RT1 Retrofitting Technique 1
- RT2 Retrofitting Technique 2
- RT3 Retrofitting Technique 3
- SD Shear Deficiency
- SRP Steel Fiber-Reinforced Polymer
- SFSD Strength and Failure Sequence Diagram
- UNIDO United Nations Industrial Development Organization
- USGS Unite States Geological Survey

XXV