Hans-Martin Henning Thorsten Urbaneck u.a.

Kühlen und Klimatisieren mit Wärme

2., erweiterte und vollständig überarbeitete Auflage

BINE-Fachbuch

Hans-Martin Henning, Thorsten Urbaneck u.a.

Kühlen und Klimatisieren mit Wärme

Kühlen und Klimatisieren mit Wärme

2., erweiterte und vollständig überarbeitete Auflage

Die Autoren:

Hans-Martin Henning Thorsten Urbaneck Alexander Morgenstern Tomas Núñez † Edo Wiemken Egbert Thümmler Ulf Uhlig

BINE Informationsdienst berichtet über Themen der Energieforschung: Neue Materialien, Systeme und Komponenten, innovative Konzepte und Methoden. BINE-Leser werden so über Erfahrungen und Lerneffekte beim Einsatz neuer Technologien in der Praxis informiert. Denn erstklassige Informationen sind die Grundlage für richtungsweisende Entscheidungen, sei es bei der Planung energetisch optimierter Gebäude, der Effizienzsteigerung industrieller Prozesse oder bei der Integration erneuerbarer Energien in bestehende Systeme.

BINE Informationsdienst ist ein Service von FIZ Karlsruhe GmbH und wird vom Bundesministerium für Wirtschaft und Energie (BMWi) gefördert.

Für weitere Fragen steht Ihnen zur Verfügung: Dr. Franz Meyer (Redaktion) BINE Informationsdienst, FIZ Karlsruhe GmbH, Büro Bonn Kaiserstraße 185–197, 53113 Bonn Tel. +49 2 28 9 23 79-0, E-Mail: bine@fiz-karlsruhe.de, www.bine.info

Bibliografische Information der Deutschen Nationalbibliothek:

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über www.dnb.de abrufbar.

ISBN (Print): 978-3-8167-9401-1 | ISBN (E-Book): 978-3-8167-9402-8

Layout: Dietmar Zimmermann | Umschlaggestaltung: Martin Kjer | Herstellung: Angelika Schmid | Satz: Fotosatz Buck, Kumhausen | Druck: Westermann Druck Zwickau GmbH, Zwickau

Alle Rechte vorbehalten.

Dieses Werk ist einschließlich aller seiner Teile urheberrechtlich geschützt. Jede Verwertung, die über die engen Grenzen des Urheberrechtsgesetzes hinausgeht, ist ohne schriftliche Zustimmung des Fraunhofer IRB Verlages unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen sowie die Speicherung in elektronischen Systemen. Die Wiedergabe von Warenbezeichnungen und Handelsnamen in diesem Buch berechtigt nicht zu der Annahme, dass solche Bezeichnungen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und deshalb von jedermann benutzt werden dürften. Sollte in diesem Werk direkt oder indirekt auf Gesetze, Vorschriften oder Richtlinien (z. B. DIN, VDI, VDE) Bezug genommen oder aus ihnen zitiert werden, kann der Verlag keine Gewähr für Richtigkeit, Vollständigkeit oder Aktualität übernehmen. Es empfiehlt sich, gegebenenfalls für die eigenen Arbeiten die vollständigen Vorschriften oder Richtlinien in der jeweils gültigen Fassung hinzuzuziehen.

Titelbild: Thorsten Urbaneck Umschlagrückseite: Thorsten Urbaneck (links & rechts), Fraunhofer ISE (Mitte)

© FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH, 2015

Verlag und Vertrieb:
Fraunhofer IRB Verlag
Fraunhofer-Informationszentrum Raum und Bau IRB
Nobelstraße 12, 70569 Stuttgart
Telefon +49 7 11 9 70-25 00
Telefax +49 7 11 9 70-25 08
irb@irb.fraunhofer.de

Inhaltsverzeichnis

Symbolverzeichnis					
Vorw	ort	8			
1	Warum klimatisieren – warum mit Wärme	9			
1.1	Innere und äußere Wärmelasten	9			
1.2	Kältebedarf in Deutschland	10			
1.3	Verfahren zur Kältebereitstellung und Klimatisierung	11			
1.4	Energetischer Vergleich von Kältemaschinen mit mechanischem und thermi-				
	schem Antrieb	12			
1.5	Wärmequellen für thermisch angetriebene Kältemaschinen	14			
1.6	Klimatisieren mit Wärme entlastet das Stromnetz	19			
2	Technologien zur thermisch angetriebenen Kälteerzeugung				
	und Klimatisierung	21			
2.1	Geschlossene Verfahren	24			
2.1.1	Generelle Funktionsweise	24			
2.1.2	Absorptionskältemaschinen	25			
2.1.3	Adsorptionskältemaschinen	33			
2.1.4	Aufbau und Funktion von Anlagen	37			
2.1.5	Dampfstrahlkälte	41			
2.1.6	Rückkühlung	48			
2.2	Offene Verfahren	51			
2.2.1	Generelle Funktionsweise	53			
2.2.2	Verfahren mit Sorptionsrotoren	55			
2.2.3	Verfahren mit flüssigen Sorptionsmitteln	61			
3	Systeme zur Klimatisierung und Kälteversorgung	63			
3.1	Anwendungen im kleinen bis mittleren Leistungsbereich	63			
3.1.1	Systemaspekte und Systemkonfigurationen	63			
3.1.2	Primärenergetische Betrachtung	70			
3.1.3	Systemauslegung und Auslegungsbeispiel	76			
3.2	Anwendungen im mittleren bis großen Leistungsbereich	83			
3.2.1	Nah- und Fernkälte	83			
3.2.2	Systemkonfigurationen	85			
3.2.3	Effizienz, Kosten, Wirtschaftlichkeit	99			
4	Ausgeführte Anlagen	103			
4.1	Nutzung solarer Wärme	103			
4.1.1	Weinlagerkühlung in Banyuls, Südfrankreich	107			
4.1.2	Sorptionsgestützte Klimatisierung von Seminarräumen der IHK Südlicher				
	Oberrhein, Freiburg	108			

4.1.3	Solare Klimatisierung eines Unterrichtraumes im Solarturm an der Richard- Fehrenbach-Gewerbeschule in Freiburg (Demonstrationsanlage im Projekt			
	SolCoolSys)	111		
4.1.4	Adsorptionskälteanlage im kleinen Leistungsbereich am Fraunhofer Institut	112		
4.1.5	für Solare Energiesysteme, Freiburg	112		
4.1.5	thermie 2000plus	113		
4.2	Nutzung der Abwärme von Blockheizkraftwerken	113		
4.2.1				
4.3	Nutzung der Abwärme von Heizkraftwerken	113 114		
4.3.1	Übersicht für Deutschland	114		
4.3.2	LiquiSorp-Pilotanlage zur sorptionsgestützten Klimatisierung mit flüssigen			
	Sorbentien in der Medizinischen Klinik Freiburg	116		
4.3.3	Fernkälte Gera	117		
4.3.4	Fernkälte Chemnitz	118		
4.3.5	Nahkälte Klinikum Chemnitz	131		
4.3.6	Umweltaspekte, Emissionsminderung durch KWKK am Beispiel			
	der Stadt Chemnitz	136		
5	Perspektiven der solaren Kühlung	139		
5.1	Vergleichsstudie Solare Kühlung	140		
5.2	Bewertung	143		
5.3	Ergebnisse	144		
6	Ausblick	149		
6.1	Forschung und Entwicklung	149		
6.2	Internationale Situation	151		
7	Zitierte Literatur und Abbildungsverzeichnis	152		
7.1	Zitierte Literatur	152		
7.2	Abbildungsverzeichnis	156		
8	Forschungsvorhaben der Bundesregierung.	158		
8.1	Laufende und kürzlich abgeschlossene Forschungsvorhaben	158		
8.2	Forschungsberichte	160		
9	Weiterführende Literatur	162		
9.1	Literatur	162		
9.2 9.3	BINE Informationsdienst	165 165		
10	Autorenangaben	166		
10.1	Anschrift der Autoren	167		

Symbolverzeichnis

Lateinische Buchstaben						
Zeichen	Bedeutung	Einheit				
A	Fläche	m²				
С	spezifische Wärmekapazität	J/(kgK)				
m	Masse	kg				
ṁ	Massenstrom	kg/s				
n	Anzahl	_				
р	Druck	Pa				
q	Wärmestromdichte	W/m²				
Q	Wärme	J				
Q	Wärmestrom	W				
t	Zeit	S				
Т	Temperatur	°C				
S	Entropie	J/K				
u	spezifische innere Energie	J/kg				
U	innere Energie	J				
V	Volumen	m³				
ý	Volumenstrom	m³/s				
Griechische Buchstaben						
Zeichen	Bedeutung	Einheit				
α	Wärmeübergangskoeffizient	W/(m ² K)				
Δ	Differenz	-				
η	dynamische Viskosität	kg/(ms)				
λ	Wärmeleitfähigkeit	W/(mK)				
ν	kinematische Viskosität	m²/s				
ρ	Dichte	kg/m³				
Indizes und Abkürzungen						
Zeichen	Bedeutung					
a	Außen					
AbKM	Absorptionskältemaschine					
AdKM	Adsorptionskältemaschine					
aus	Austritt					
BES	Be- und Entladesystem					
BHKW	Blockheizkraftwerk					
DSK	Dampfstrahlkältemaschine					
eff	Effektiv					
ein	Eintritt					
HKW	Heizkraftwerk					
KWK	Kraft-Wärme-Kopplung					
KWKK	Kraft-Wärme-Kälte-Kopplung					
m	Mittlere					
max	Maximum, maximal					
min	Minimum, minimal					
Umg	Umgebung					
Ver	Verlust					

Vorwort

Saubere, frische und angenehm temperierte Luft ist entscheidend für die Behaglichkeit von Räumen. Auch die Feuchte der Raumluft und die Temperatur der umgebenden Raumflächen sind wichtige Parameter für Wohlbefinden und Leistungsfähigkeit von Menschen. Aufgabe der Klimatechnik ist es, solche Raumbedingungen aufrecht zu erhalten.

Raumlufttechnische Anlagen – gleich welcher Art – erhöhen den Energiebedarf, das Investitionsvolumen und die Betriebskosten eines Gebäudes. Ziel jeder Gebäudeplanung sollte es daher sein, den Kühlungsbedarf zu minimieren. Dennoch ist es in vielen Fällen notwendig, aktive Systeme zur Regelung von Temperatur und Raumluftfeuchte einzusetzen. In Kongresszentren, Theatern, Warenhäusern, Hochhäusern usw. lässt sich ein behagliches Raumklima in der Regel nur mit raumlufttechnischen Anlagen zuverlässig aufrechterhalten.

Bisher werden für die Gebäudeklimatisierung hauptsächlich elektrisch angetriebene Kompressionskältemaschinen eingesetzt. Wenn diese ohne Kältespeicher betrieben werden, belasten sie das Netz oftmals gerade zu Spitzenlastzeiten mit einem hohen Leistungsbedarf.

In den USA und Japan erreichen mit Gas befeuerte Absorptionskältemaschinen große Marktanteile. Diese nutzen im Sommer freie Kapazitäten des Gasnetzes und reduzieren so die Spitzenlasten des Stromnetzes. Mit dem hohen Temperaturniveau der Gasfeuerung sind Kälteleistungen bis zum 1,7-fachen der eingesetzten Wärmeleistung erreichbar.

In den letzten Jahren wächst das Interesse an wärmegetriebenen Kühl- und Entfeuchtungsverfahren, die Wärme auf niedrigem Temperaturniveau wie z.B. Fernwärme, Abwärme und insbesondere auch solare Wärme für die Klimatisierung zu nutzen. Das vorliegende BINE-Fachbuch soll einen umfassenden Überblick über die verschiedenen Verfahren geben, die Wärme als Antriebsenergie für die Kälteerzeugung zu nutzen.

FIZ Karlsruhe GmbH BINE Informationsdienst