HPFRCC-7.
Proceedings of the 7th RILEM Workshop on High Performance Fiber Reinforced Cement Composites.
Zusammenfassung
Zementgebundene Hochleistungsfaserverbundwerkstoffe (engl. High Performance Fiber Reinforced Cement Composites, HPFRCC) stellen eine Klasse von Zementkompositen dar, die dehnungsverfestigend sind, eine hohe Bruchdehnung aufweisen und vor Erreichen der Höchstlast zahlreiche Risse zeigen. Neben dieser mechanischen Definition können weitere Merkmale Höchstleistung charakterisieren, wie z. B. gute Verarbeitbarkeit, Dauerhaftigkeit und Robustheit. Der Hauptanlass dieses internationalen Workshops war, eine hochkarätige Plattform für neueste Ergebnisse und Entwicklungen auf dem Gebiet von HPFRCC zu schaffen. Über 60 Beiträge von leitenden Weltexperten sind in diesem Band vertreten, die den Stand der Forschung wiedergeben. Einzelkapitel betreffen den frischen und erhärtenden Zustand, Selbstverdichtende Komposite, interne Nachbehandlung und Selbstheilung, mechanisches Verhalten unter Zug, Druck und Schub, kombinierte Wirkungen von Last und Klima, Ermüdung, Impact, Brand, konstruktive Anwendungen, Verstärkung. Einige Beiträge befassen sich auch mit Textilbeton und Höchstleistungskompositen.
Abstract
Zementgebundene Hochleistungsfaserverbundwerkstoffe (engl. High Performance Fiber Reinforced Cement Composites, HPFRCC) stellen eine Klasse von Zementkompositen dar, die dehnungsverfestigend sind, eine hohe Bruchdehnung aufweisen und vor Erreichen der Höchstlast zahlreiche Risse zeigen. Neben dieser mechanischen Definition können weitere Merkmale Höchstleistung charakterisieren, wie z. B. gute Verarbeitbarkeit, Dauerhaftigkeit und Robustheit. Der Hauptanlass dieses internationalen Workshops war, eine hochkarätige Plattform für neueste Ergebnisse und Entwicklungen auf dem Gebiet von HPFRCC zu schaffen. Über 60 Beiträge von leitenden Weltexperten sind in diesem Band vertreten, die den Stand der Forschung wiedergeben. Einzelkapitel betreffen den frischen und erhärtenden Zustand, Selbstverdichtende Komposite, interne Nachbehandlung und Selbstheilung, mechanisches Verhalten unter Zug, Druck und Schub, kombinierte Wirkungen von Last und Klima, Ermüdung, Impact, Brand, konstruktive Anwendungen, Verstärkung. Einige Beiträge befassen sich auch mit Textilbeton und Höchstleistungskompositen.
Schlagworte
- Kapitel Ausklappen | EinklappenSeiten
- I–2
- 3–10 1 International workshop series on High Performance Fiber Reinforced Cement Composites (HPFRCC): History and Evolution 3–10
- 13–68 Part 1: Production of HPFRCC and TRC 13–68
- 13–20 2 Improving the first crack behaviour of textile reinforced concrete 13–20
- 21–28 3 A compound for the production of high and ultra-high performance concrete 21–28
- 29–36 4 Increased efficiency of column strengthening with TRC by addition of short fibres in the fine-grained concrete matrix 29–36
- 37–44 5 Mix design and basic properties of a new UHPFRC featuring portland-limestone cement 37–44
- 45–52 6 Effect of mineral admixtures on the properties of a sustainable ultra-high performance concrete (UHPC) 45–52
- 53–60 7 Sustainable development of an ultra-high performance fibre reinforced concrete (UHPFRC): towards an efficient utilization of fibres 53–60
- 61–68 8 Modifying carbon roving-cement matrix bond by inorganic coating 61–68
- 71–126 Part 2: Properties of HPFRCC and UHPC 71–126
- 71–78 9 Autogeneous self healing of high performance fibre reinforced cementitious composites 71–78
- 79–86 10 Performance characteristics of HPDSP concrete: an overview 79–86
- 87–94 11 Development of a high-performance fiber-reinforced cement composite for large scale processing 87–94
- 95–102 12 The effect of fiber content and aggregate type on the performance of UHPC 95–102
- 103–110 13 Tensile characterization of sustainable ultra-high performance fibre reinforced concrete containing GGBS 103–110
- 111–118 14 Probabilistic micromechanical model of engineered cementitious composites (ECC) 111–118
- 119–126 15 Influence of steel fiber content on fracture energy of HPFRCC 119–126
- 129–224 Part 3: Testing methods 129–224
- 129–136 16 Assessment of constitutive model for ultra-high performance fiber reinforced cement composites using the Barcelona test 129–136
- 137–144 14 Determination of fibre orientation factor in high and ultra-high-performance fibrereinforced self-compacting concrete 137–144
- 145–152 18 Rough concrete surfaces for strengthening and retrofitting – 3D Model of roughening process for description of concrete surface geometry 145–152
- 153–160 19 On the application of dispersed fibres as reinforcement for concrete shields against radiation 153–160
- 161–168 20 Concrete with superabsorbent polymer fiber 161–168
- 169–176 21 Water penetration into HPFRCC under imposed strain 169–176
- 177–184 22 Size effect on the flexural performance of ultra high performance fiber reinforced concrete (UHPFRC) 177–184
- 185–192 23 Comparison between inverse analysis procedure results and experimental measurements obtained from UHPFRC four-point bending tests 185–192
- 193–200 24 Mechanical properties of a highly flowable ultra-high-performance fiber-reinforced concrete mixture considering large-size effects 193–200
- 201–208 25 On the chemo-mechanical behavior of basalt textile reinforced refractory concrete under high temperatures 201–208
- 209–216 26 Quantification of tensile response of UHP-FRC 209–216
- 217–224 27 Ultra high performance fiber reinforced concrete under impact loading 217–224
- 227–282 Part 4: Durability and sustainability 227–282
- 227–234 28 Durability performance of strain hardening fiber reinforced concrete 227–234
- 235–242 29 Self-healing capacity of a strain-hardening cement-based composite (SHCC) with bacteria 235–242
- 243–250 30 Influence of imposed compressive stress and subsequent self-healing on capillary absorption and chloride penetration into UHPFRCC 243–250
- 251–258 31 Influence of an imposed tensile stress and subsequent self-healing on capillary absorption and chloride penetration into HPFRCC 251–258
- 259–266 32 Development of engineered cementitious composites with local material ingredients 259–266
- 267–274 33 Mineral building material stock of buildings and infrastructures in Germany and flows as indicators for recycling potentials 267–274
- 275–282 34 Fiber-reinforced high–performance concretes exposed to high temperature: materials behavior and structural implications 275–282
- 285–340 Part 5: Special loading conditions (impact, cyclic and seismic) 285–340
- 285–292 35 Study on deformation of a reinforced concrete bridge pier constructed using highstrength reinforcing bars and high performance material 285–292
- 293–300 36 Behaviour of high strength strain-hardening cement-based composites (HS-SHCC) subjected to impact loading 293–300
- 301–308 37 Tensile behavior and durability of high performance fiber reinforced concrete 301–308
- 309–316 38 Micromechanics-based study on fatigue failure of engineered cementitious composites 309–316
- 317–324 39 Impact behaviour of high performance glass fibre reinforced cement composite laminates 317–324
- 325–332 40 Penetration and explosion of ultra-high performance fiber reinforced cement composite subjected to impact 325–332
- 333–340 41 Behaviour of strain-hardening cement-based composites (SHCC) subject to cyclic loading 333–340
- 343–398 Part 6: Bending and shear 343–398
- 343–350 42 Experimental studies to determine the flexural and cracking performance of hybrid steel-mesh and polyolefin-fiber reinforced cementitious composites 343–350
- 351–358 43 Hybrid steel fiber reinforced concrete panels in shear: experimental investigation 351–358
- 359–366 44 Interfacial bond tailoring for crack width reduction in high strength-high ductility concrete (HSHDC) 359–366
- 367–374 45 Effect of deformation history on steel-reinforced HPFRCC flexural member behavior 367–374
- 375–382 46 Investigation of the size effect in shear of steel fiber reinforced concrete (SFRC) slender beams 375–382
- 383–390 47 Bending behavior of precast bridge slabs in UHPFRC under static and cyclic loadings 383–390
- 391–398 48 Stability of reinforcing bars in steel fiber reinforced concrete flexural members 391–398
- 401–504 Part 7: Structural applications 401–504
- 401–408 49 Performance of full-scale ultra-high performance fiber-reinforced concrete (UHPFRC) column subjected to extreme earthquake-type loading 401–408
- 409–416 50 Seismic performance of full-scale high-performance fiber-reinforced (HPFRC) special moment frame slab-beam-column subassemblage using joints as the major energy dissipation source 409–416
- 417–424 51 Tension stiffening effect of reinforced high-performance fiber-reinforced cementitious composites 417–424
- 425–432 52 Finite element analysis of test configurations for identification of interface parameters in layered FRCC systems 425–432
- 433–440 53 UHP-FRC connections: delivering innovation and enhancing performance 433–440
- 441–448 54 Demountable construction for sustainable buildings 441–448
- 449–456 55 Cable stayed footbridge made of UHPC 449–456
- 457–464 56 Impact of reinforcement ratio on deformation capacity of reinforced highperformance fiber-reinforced cementitious composites 457–464
- 465–472 57 Jacketing of existing piers: evaluation of the risk of cracking due to hydration heat when different types of application techniques are used 465–472
- 473–480 58 Cast-on site UHPFRC for improvement of existing structures – achievements over the last 10 years in practice and research 473–480
- 481–488 59 Modeling the load-deformation response of FRC structural members 481–488
- 489–496 60 HPFRCC beams in innovative elevated slabs: experimental characterization and modeling 489–496
- 497–504 61 Influence of HPFRCC on corrosion initiation and corrosion propagation 497–504
- 505–506 Author index 505–506
- 507–510 Subject index 507–510